Advanced magnetic resonance (MR) relaxation and diffusion correlation measurements and imaging provide a means to non-invasively monitor gelation for biotechnology applications. In this study, MR is used to characterize physical gelation of three alginates with distinct chemical structures; an algal alginate, which is not O-acetylated but contains poly guluronate (G) blocks, bacterial alginate from Pseudomonas aeruginosa, which does not have poly-G blocks, but is O-acetylated at the C2 and/or C3 of the mannuronate residues, and alginate from a P. aeruginosa mutant that lacks O-acetyl groups. The MR data indicate that diffusion-reaction front gelation with Ca(2+) ions generates gels of different bulk homogeneities dependent on the alginate structure. Shorter spin-spin T(2) magnetic relaxation times in the alginate gels that lack O-acetyl groups indicate stronger molecular interaction between the water and biopolymer. The data characterize gel differences over a hierarchy of scales from molecular to system size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428434PMC
http://dx.doi.org/10.1016/j.jbiotec.2012.04.016DOI Listing

Publication Analysis

Top Keywords

algal alginate
8
magnetic resonance
8
o-acetyl groups
8
alginate
6
microbial algal
4
gelation
4
alginate gelation
4
gelation characterized
4
characterized magnetic
4
resonance advanced
4

Similar Publications

Enhancing hexavalent chromium stable reduction via sodium alginate encapsulation of newly isolated fungal and bacterial consortia.

J Hazard Mater

December 2024

School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China. Electronic address:

Chromium [Cr(VI)]-induced soil pollution is a serious environmental threat. Bioremediation utilizes specific microbes capable of transforming Cr(VI) into the less toxic Cr(III), however, microbial efficacy can be inhibited by elevated pollutant concentrations and competition from indigenous microbial communities. Thus, this study explored the potential of single and multi-domain microbial consortia encapsulated in alginate to overcome these shortcomings.

View Article and Find Full Text PDF

The genus () is most often associated with human clinical samples and livestock. However, are also prevalent in the hindgut of the marine herbivorous fish (Silver Drummer), and analysis of their carbohydrate-active enzyme (CAZyme) encoding gene repertoires suggests degrade macroalgal biomass to support fish nutrition. To further explore host-associated traits unique to -derived , we compared 445 high-quality genomes of available in public databases (e.

View Article and Find Full Text PDF

Diclofenac Degradation by Immobilized Chlamydomonas reinhardtii and Scenedesmus obliquus.

Microbiologyopen

December 2024

Department of Geological Sciences and Engineering, Queen's University, Kingston, Ontario, Canada.

Diclofenac (DCF), a commonly used anti-inflammatory medication, presents environmental concerns due to its presence in water bodies, resistance to conventional wastewater treatment methods, and detection at increasing concentrations (ng/L to µg/L) that highlight DCF as a global emerging pollutant. While microalgae have been effective in degrading DCF in wastewater, immobilization into a matrix offers a promising approach to enhance treatment retention and efficiency. This study aimed to evaluate the efficacy of DCF removal using immobilized freshwater microalgae.

View Article and Find Full Text PDF
Article Synopsis
  • Kelp contains important polysaccharides - laminarin, cellulose, and alginate - that can be used as functional oligosaccharides.
  • A new enzyme called CelA was found, which efficiently breaks down kelp powder and shows high activity against cellulose, alginate, and laminarin.
  • CelA's ability to hydrolyze various polysaccharides suggests it has significant potential in the food and feed industries for converting algal biomass into valuable oligosaccharides.
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how a cyanobacteria-loaded oxygen-releasing hydrogel affects vascularization, using the chick chorioallantoic membrane (CAM) as a model.
  • - Cyanobacterial microspheres were applied to the CAM on the eighth day of embryonic development, and their impact on angiogenesis was assessed under controlled lighting conditions.
  • - Results suggest that these microspheres can promote tissue vascular growth by supplying oxygen, indicating their potential use in regenerative medicine as a new biological material.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!