Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This article highlights the development of a novel nanocomposite based on nanosilica filled modified natural polymer (i.e. xanthan gum grafted with polyacrylamide:XG-g-PAM) for removal of Pb(2+) ions from aqueous solution. The chemical, structural, textural, and rheological characteristics of the nanocomposite (XG-g-PAM/SiO(2)) revealed stronger interaction of silica nanoparticles with polymer matrix and showed maximum adsorption capacity (Q(max)=537.634 mg g(-1)) of Pb(2+) ion, which is significantly higher than other reported adsorbents. This developed novel material also finds potential application as an efficient adsorbent for the treatment of battery industry wastewater. The enhanced adsorption efficiency may be because of its higher hydrodynamic radius and hydrodynamic volume. The adsorption kinetic parameters were best described by pseudo-second-order model. The adsorption equilibrium data fitted well with Langmuir isotherm. The thermodynamic studies confirm that the adsorption is spontaneous and endothermic. Desorption studies affirmed the regenerative efficacy of loaded Pb(2+).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2012.05.063 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!