We studied membrane activity of the bacterial peptide TisB involved in persister cell formation. TisB and its analogs form multi-state ion-conductive pores in planar lipid bilayers with all states displaying similar anionic selectivity. TisB analogs differing by ±1 elementary charges show corresponding changes in selectivity. Probing TisB pores with poly-(ethylene glycol)s reveals only restricted partitioning even for the smallest polymers, suggesting that the pores are characterized by a relatively small diameter. These findings allow us to suggest that TisB forms clusters of narrow pores that are essential for its mechanism of action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498054PMC
http://dx.doi.org/10.1016/j.febslet.2012.06.021DOI Listing

Publication Analysis

Top Keywords

pores planar
8
planar lipid
8
lipid bilayers
8
tisb analogs
8
tisb
6
pores
5
persister-promoting bacterial
4
bacterial toxin
4
toxin tisb
4
tisb produces
4

Similar Publications

Kingella kingae, an emerging pediatric pathogen, secretes the pore-forming toxin RtxA, which has been implicated in the development of various invasive infections. RtxA is synthesized as a protoxin (proRtxA), which gains its biological activity by fatty acylation of two lysine residues (K558 and K689) by the acyltransferase RtxC. The low acylation level of RtxA at K558 (2-23%) suggests that the complete acylation at K689 is crucial for toxin activity.

View Article and Find Full Text PDF

We present simulation results for the Donnan equilibrium between a homogeneous bulk reservoir and inhomogeneous confining geometries with varying number of restricted dimensions, . Planar slits ( = 1), cylindrical pores ( = 2), and spherical cavities ( = 3) are considered. The walls have a negative surface charge density.

View Article and Find Full Text PDF

Most neural prosthetic devices are based on electrical stimulation, although the modulation of neuronal activity by a localized chemical delivery would better mimic physiological synaptic machinery. In the past decade, various drug delivery approaches attempted to emulate synaptic transmission, although they were hampered by poor retention of their cargo while reaching the target destination, low spatial resolution, and poor biocompatibility and stability of the materials involved. Here, we propose a planar solid-state device for multisite neurotransmitter translocation at the nanoscale consisting of a nanopatterned ceramic membrane connected to a reservoir designed to store neurotransmitters.

View Article and Find Full Text PDF

Continuously tunable negative pressure for engineering high-symmetry nanocrystalline phases.

Proc Natl Acad Sci U S A

November 2024

Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104.

In this work, the phenomenon of strain induced by a mismatch in thermal expansion coefficients between a thin film and its substrate is harnessed in a new context, replacing the canonical planar support with a three-dimensional (3-D), nanoconfining scaffold in which we embed a material of interest. In this manner, we demonstrate a general approach to exert a continuously tunable, triaxial, tensile strain, defying the Poisson ratio of the embedded material and achieving the exotic condition of "negative pressure." This approach is hypothetically generalizable to materials of low modulus and high thermal expansion coefficient, and we use it here to achieve negative pressure in perovskite-phase CsPbI embedded within the cylindrical pores of anodic aluminum oxide membranes.

View Article and Find Full Text PDF

We prepared biocompatible elastic fibers with high porosity and high tensile strength from poly[()-3-hydroxybutyrate--4-hydroxybutyrate], which is a microbial polyester that can be produced from renewable carbon resources by isothermal crystallization. It was possible to control the pore size by adjusting the isothermal crystallization time. Most of the pores were approximately less than 10 μm in diameter, did not penetrate, and were distributed discontinuously throughout the fibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!