The vast majority of organisms produce ATP by a membrane-bound rotating protein complex, termed F-ATP synthase. In chloroplasts, the corresponding enzyme generates ATP by using a transmembrane proton gradient generated during photosynthesis, a process releasing high amounts of molecular oxygen as a natural byproduct. Due to its chemical properties, oxygen can be reduced incompletely which generates several highly reactive oxygen species (ROS) that are able to oxidize a broad range of biomolecules. In extension to previous studies it could be shown that ROS dramatically decreased ATP synthesis in situ and affected the CF1 portion in vitro. A conserved cluster of three methionines and a cysteine on the chloroplast γ subunit could be identified by mass spectrometry to be oxidized by ROS. Analysis of amino acid substitutions in a hybrid F1 assembly system indicated that these residues were exclusive catalytic targets for hydrogen peroxide and singlet oxygen, although it could be deduced that additional unknown amino acid targets might be involved in the latter reaction. The cluster was tightly integrated in catalytic turnover since mutants varied in MgATPase rates, stimulation by sulfite and chloroplast-specific γ subunit redox-modulation. Some partial disruptions of the cluster by mutagenesis were dominant over others regarding their effects on catalysis and response to ROS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbabio.2012.06.007DOI Listing

Publication Analysis

Top Keywords

amino acid
12
reactive oxygen
8
oxygen species
8
atp
5
species affect
4
affect atp
4
atp hydrolysis
4
hydrolysis targeting
4
targeting highly
4
highly conserved
4

Similar Publications

We aimed to explore the role of Amino acid metabolism (AAM) and identify biomarkers for prognosis management and treatment of lung adenocarcinoma. Differentially expressed genes (DEGs) associated with AAM in lung adenocarcinoma were selected from public databases. Samples were clustered into varying subtypes using ConsensusClusterPlus based on gene levels.

View Article and Find Full Text PDF

Importance: Obsessive-compulsive and related disorders (OCRDs) encompass various neuropsychiatric conditions that cause significant distress and impair daily functioning. Although standard treatments are often effective, approximately 60% of patients may not respond adequately, underscoring the need for novel therapeutic approaches.

Objective: To evaluate improvement in OCRD symptoms associated with glutamatergic medications as monotherapy or as augmentation to selective serotonin reuptake inhibitors, with a focus on double-blind, placebo-controlled randomized clinical trials (RCTs).

View Article and Find Full Text PDF

mTOR Signaling Regulates Multiple Metabolic Pathways in Human Lung Fibroblasts After TGF-β and in Pulmonary Fibrosis.

Am J Physiol Lung Cell Mol Physiol

January 2025

Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.

View Article and Find Full Text PDF

Programmable Food-Derived Peptide Coassembly Strategies for Boosting Targeted Colitis Therapy by Enhancing Oral Bioavailability and Restoring Gut Microenvironment Homeostasis.

ACS Nano

January 2025

Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.

Orally targeting nanostrategies of multiple nutraceuticals have attracted increasing attention in ulcerative colitis (UC) therapy for superior patient compliance, cost-effectiveness, and biocompatibility. However, the actual targeting delivery and bioefficacy of nutraceuticals are extremely restricted by their poor solubility, interior gastrointestinal retention, and base permeability. Herein, we developed controllable colon-targeting nanoparticles (NPs) composed of a quaternary ammonium chitosan (HTCC) shell and succinic acid-modified γ-cyclodextrin (SACD) core for precise UC treatment.

View Article and Find Full Text PDF

The development of new medicines with unique methods of antimicrobial action is desperately needed due to the emerging multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus. Therefore, antimicrobial peptoids have emerged as potential new antimicrobials. Thirteen peptoid analogues have been designed and synthesized via solid phase synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!