Centromeric heterochromatin assembly in fission yeast requires the RNAi pathway. Chp1, a chromodomain (CD) protein, forms the Ago1-containing RNA-induced transcriptional silencing (RITS) complex and recruits siRNA-bound RITS to methylated histone H3 lysine 9 (H3K9me) via its CD. Here, we show that the CD of Chp1 (Chp1-CD) possesses unique nucleic acid-binding activities that are essential for heterochromatic gene silencing. Detailed electrophoretic-mobility shift analyses demonstrated that Chp1 binds to RNA via the CD in addition to its central RNA-recognition motif. Interestingly, robust RNA- and DNA-binding activity of Chp1-CD was strongly enhanced when it was bound to H3K9me, which was revealed to involve a positively charged domain within the Chp1-CD by structural analyses. These results demonstrate a role for the CD that provides a link between RNA, DNA, and methylated histone tails to ensure heterochromatic gene silencing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2012.05.017DOI Listing

Publication Analysis

Top Keywords

heterochromatic gene
12
gene silencing
12
nucleic acid-binding
8
chp1 chromodomain
8
methylated histone
8
intrinsic nucleic
4
acid-binding activity
4
chp1
4
activity chp1
4
chromodomain required
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!