Cyclic AMP production was studied in isolated canine fundic gastric mucosal cells. Histamine, prostaglandin E2 (PGE2), and secretin increased cyclic AMP production by unenriched mucosal cells. In separated cell fractions, histamine stimulation of cyclic AMP production correlated with the parietal cell content of the fractions. Secretin in concentrations above 1 nM stimulated cyclic AMP production, and this effect correlated with the pepsinogen content of the separated cell fractions. At concentrations above 1 microM, PGE2 stimulated cyclic AMP production; this effect was found in all separated cell fractions and was not associated with any of the available cell markers. PGE2 stimulation of cyclic AMP production was, however, negatively correlated with the parietal cell content. Thus, histamine stimulated cyclic AMP production by parietal cells and secretin stimulated production of cyclic AMP by chief cells. PGE2 stimulation of cyclic AMP production could not be localized to a single cell type but occurred primarily in nonparietal cells.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.1979.237.5.E437DOI Listing

Publication Analysis

Top Keywords

cyclic amp
40
amp production
36
mucosal cells
12
separated cell
12
cell fractions
12
stimulation cyclic
12
stimulated cyclic
12
cyclic
10
amp
10
production
10

Similar Publications

Pharmacological elevation of cyclic AMP (cAMP) of cultured cumulus-oocyte complexes (COC) before or coincident with initiation of maturation has been reported to improve outcomes for various systems for in vitro production of embryos. Here it was hypothesized that artificial elevation of cAMP in the oocyte for a 2-h period of prematuration would improve developmental competence of matured oocytes and result in increased blastocyst yield and altered expression of genes important for embryonic differentiation. Treated COC were cultured for 2 h with dibutyryl cAMP (dbcAMP), a membrane-permeable form of cAMP, and 3-isobutyl-1-methylxanthine (IBMX), which inhibits phosphodiesterases that convert cAMP to ATP.

View Article and Find Full Text PDF

The cyclic GMP-AMP synthase (cGAS)-stimulator of the interferon genes (STING) pathway plays a key role in triggering interferon and inflammatory responses against microbial invasion or tumor. However, aberrant activation of the cGAS-STING pathway is associated with a variety of inflammatory and autoimmune diseases, and thus inhibition of STING is regarded as a potential new approach to treating these diseases. Herein, we report a series of novel indolyl-urea derivatives as STING inhibitors.

View Article and Find Full Text PDF

Cell-free assays reveal that the HIV-1 capsid protects reverse transcripts from cGAS immune sensing.

PLoS Pathog

January 2025

Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America.

Retroviruses can be detected by the innate immune sensor cyclic GMP-AMP synthase (cGAS), which recognizes reverse-transcribed DNA and activates an antiviral response. However, the extent to which HIV-1 shields its genome from cGAS recognition remains unclear. To study this process in mechanistic detail, we reconstituted reverse transcription, genome release, and innate immune sensing of HIV-1 in a cell-free system.

View Article and Find Full Text PDF

Structural and evolutionary insights into the functioning of glycoprotein hormones and their receptors.

Andrology

January 2025

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.

The neuroendocrine system that comprises the glycoprotein hormones (GpHs) and their receptors is essential for reproduction and metabolism. Each GpH hormone is an αβ heterodimer of cystine-knot proteins and its cognate receptor is a G-protein coupled receptor (GPCR) distinguished by a large leucine-rich-repeat (LRR) extracellular domain that binds the hormone and a class A GPCR transmembrane domain that signals through an associating heterotrimeric G protein. Hence, the receptors are called LRR-containing GPCRs-LGRs.

View Article and Find Full Text PDF

Platinum drugs upregulate CXCR4 and PD-L1 expression via ROS-dependent pathways, with implications for novel combined treatment in gastric cancer.

J Pathol Clin Res

January 2025

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, PR China.

CXC chemokine receptor 4 (CXCR4) and programmed cell death-ligand 1 (PD-L1) are two critical molecules involved in the tumor immune microenvironment. However, the impact of platinum drugs, such as cisplatin, on CXCR4 or PD-L1 expression and the underlying mechanisms in gastric cancer (GC) remain unknown. Moreover, the correlation between their expression levels in GC remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!