A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of accuracy of mitral valve regurgitation volume determined by three-dimensional transesophageal echocardiography versus cardiac magnetic resonance imaging. | LitMetric

Direct planimetry of anatomic regurgitation orifice area (AROA) using 3-dimensional transesophageal echocardiography (TEE) has been described. This study sought to (1) compare mitral valve regurgitant volume (RV) derived by AROA using 3-dimensional TEE with RV obtained by cardiac magnetic resonance (CMR) imaging and (2) determine the impact of AROA and flow velocity changes throughout systole on the dynamic variation in mitral regurgitation. In 43 patients (71 ± 11 years old) with mild to severe mitral regurgitation, 3-dimensional TEE and CMR were performed. Mitral valve RV was determined based on (1) AROA at 5 subintervals of systole and analysis of the regurgitant continuous-wave Doppler signal at equal durations of systole, (2) effective regurgitation orifice area (EROA) using the proximal isovelocity surface area method, (3) CMR with subtraction of aortic outflow volume from left ventricular stroke volume. RV calculated by AROA tended to overestimate RV less than RV calculated by EROA compared to RV by CMR (average bias +20 ml, 95% confidence interval [CI] -41 to +81, vs +13 ml, 95% CI -22 to 47). In patients with RV >30 ml by CMR, overestimation of RV using the AROA method was less than using the EROA method (difference in means +18 ml, 95% CI 4 to 32, p <0.001). AROA determined by 3-dimensional TEE varied by only 18% among the 5 subintervals of systole, and the velocity time integral of the subinterval with the highest flow was 120% of the subinterval with the lowest flow. In conclusion, 3-dimensional TEE allows accurate analysis of mitral valve RV. In the clinically relevant group of patients with RV >30 ml as defined by CMR, the AROA method results in less overestimation of RV than the EROA method. Changes in AROA during systole contribute much less to dynamic variation in mitral regurgitation severity than changes in regurgitant flow velocity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.amjcard.2012.05.037DOI Listing

Publication Analysis

Top Keywords

mitral valve
12
mitral regurgitation
12
transesophageal echocardiography
8
cardiac magnetic
8
magnetic resonance
8
regurgitation orifice
8
orifice area
8
aroa
8
aroa 3-dimensional
8
3-dimensional tee
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!