A number of computational tools have been developed for composing synthetic gene circuits, managing workflows, and simulating their behavior. Less attention has been directed towards the underlying parts that go into these designs. New computational approaches nonetheless are being developed for engineering these parts and relating their underlying DNA or amino-acid sequences to functional parameters. These approaches range from detailed mechanistic models to simple ones based on statistical correlations. The challenges will be to integrate the disparate tools into a common framework for the computer-aided design of synthetic gene circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2012.05.003 | DOI Listing |
Oral Maxillofac Surg
January 2025
Department of Oral and Maxillofacial Surgery, German Armed Forces Central Hospital, Rübenacherstr. 170, 56072, Koblenz, Germany.
Purpose: This study aims to analyze microvascular reconstruction in Oral and Maxillofacial Surgery (OMFS) in Europe.
Methods: Based on previous studies, a dynamic online questionnaire was developed and subjected to internal and external evaluation. The questionnaire comprised multiple-choice, rating, and open-ended questions, addressing general and specific aspects and the impacts of the COVID-19 pandemic on microvascular reconstruction in OMFS in Europe.
Nanoscale Horiz
January 2025
London Centre for Nanotechnology, 19 Gordon St, London, WC1H 0AH, UK.
We demonstrate low energy, forming and compliance-free operation of a resistive memory obtained by the partial oxidation of a two-dimensional layered van-der-Waals semiconductor: hafnium disulfide (HfS). Semiconductor-oxide heterostructures are achieved by low temperature (<300 °C) thermal oxidation of HfS under dry conditions, carefully controlling process parameters. The resulting HfOS/HfS heterostructures are integrated between metal contacts, forming vertical crossbar devices.
View Article and Find Full Text PDFCureus
December 2024
Dentistry, Kurdistan Higher Council of Medical Specialties, Erbil, IRQ.
Introduction The utilization of Computer-Aided Design and Computer-Aided Manufacturing (CAD/CAM) technology in the production of polyetheretherketone (PEEK) and acetal frameworks enhances the precision and stability of partial denture frameworks. This study evaluates the retentive forces of CAD/CAM-fabricated PEEK, acetal, and cobalt-chromium (Co-Cr) frameworks in removable partial dentures (RPDs). Methods Forty-five frameworks were fabricated (15 each of PEEK, acetal, and Co-Cr) and tested for retentive forces using a universal testing machine at a crosshead speed of 5 mm/min.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Biodegradable medical devices undergo degradation following implantation, potentially leading to clinical failure. Consequently, it is necessary to assess the change in their properties post-implantation. However, a standardized method for the precise evaluation of the changes in their physicochemical properties is currently lacking.
View Article and Find Full Text PDFBMC Med Educ
January 2025
Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
Background: Computer-assisted learning (CAL) has the potential to enhance learning outcomes and satisfaction. However, there are limited reports in the literature that describe or evaluate the implementation of this method to promote competency-based learning in removable partial denture (RPD) design. Therefore, this study aimed to: (1) compare the effectiveness of different learning methods using a 3D software-aided RPD design program, (2) evaluate the learning outcomes associated with these different methods following active learning, and (3) assess students' satisfaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!