In a project to find novel neutral P1 fragments for the synthesis of thrombin inhibitors with improved pharmacokinetic properties, fragments containing a benzothiazole guanidine scaffold were identified as weak thrombin inhibitors. WaterLOGSY (Water-Ligand Observed via Gradient SpectroscopY) NMR was used to detect fragments binding to thrombin and these fragments were followed up by Biacore A100 affinity measurements and enzyme assays. A crystal structure of the most potent compound with thrombin was obtained and revealed an unexpected binding mode as well as the key interactions of the fragment with the protein. Based on these results, the structure-based design and synthesis of a small series of optimized novel substituted benzothiazole guanidines with comparatively low pK(a) values was accomplished. Testing of these compounds against human trypsin I and human trypsin IV revealed unexpected inhibitory activity and selectivity of some of the compounds, making them attractive starting points for selective trypsin inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2012.05.046 | DOI Listing |
J Phys Chem B
January 2025
Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States.
The achievement of sufficient dispersion of vulcanization accelerators is critical to tailoring superior cross-linked elastomers. Modern recipes rely on multicomponent formulations with silica particles covered by coupling agents. We study the molecular properties of select accelerators in polyisoprene melts and their affinity for functionalized surfaces via extensive all-atom molecular dynamics simulations.
View Article and Find Full Text PDFEnviron Int
December 2024
Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany; University of Leipzig, Institute for Analytical Chemistry, Linnéstrasse 3, 04103 Leipzig, Germany. Electronic address:
Tire and road wear particles (TRWP) are a major contributor to non-exhaust traffic emissions, but their contribution to and dynamics in urban aerosol is not well known. Urban particulate matter (PM) in the size fraction below 10 µm (PM) from two German cities was collected over 2 weeks and analysed for 39 tire-related chemicals, including amines, guanidines, ureas, benzothiazoles, p-phenylenediamines, quinolines and several transformation products (TPs). Of these, 37 compounds were determined in PM at median concentrations of 212 pg/m for 1,3-diphenylguanidine (DPG) and 132 pg/m for benzothiazole-2-sulfonic acid (BTSA); 10 of the compounds have not been reported in urban aerosol before.
View Article and Find Full Text PDFACS Chem Neurosci
December 2024
Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India.
Neurodegenerative diseases, notably Alzheimer's and Parkinson's, hallmark their progression through the formation of amyloid aggregates resulting from misfolding. While current therapeutics alleviate symptoms, they do not impede disease onset. In this context, repurposing existing drugs stands as a viable therapeutic strategy.
View Article and Find Full Text PDFContact Dermatitis
February 2025
Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden.
RSC Adv
May 2024
Chemistry Department, Faculty of Science, Helwan University Cairo 11795 Egypt
Cancer remains a worldwide healthcare undertaking, demanding continual innovation in anticancer drug development due to frequent drug resistance and adverse effects associated with existing therapies. The benzothiazole compounds, particularly 2-aminobenzothiazole derivatives, have attracted interest for their versatility in generating novel anticancer agents. This study explores the synthesis, and anticancer evaluation of new pyrimidine-based 2-aminobenzothiazole derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!