A versatile and efficient functionalization strategy for polymeric nanoparticles (NPs) has been reported and successfully applied to PEGylated, biodegradable poly(alkyl cyanoacrylate) (PACA) nanocarriers. The relevance of this platform was demonstrated in both the fields of cancer and Alzheimer's disease (AD). Prepared by copper-catalyzed azide-alkyne cycloaddition (CuAAC) and subsequent self-assembly in aqueous solution of amphiphilic copolymers, the resulting functionalized polymeric NPs exhibited requisite characteristics for drug delivery purposes: (i) a biodegradable core made of poly(alkyl cyanoacrylate), (ii) a hydrophilic poly(ethylene glycol) (PEG) outer shell leading to colloidal stabilization, (iii) fluorescent properties provided by the covalent linkage of a rhodamine B-based dye to the polymer backbone, and (iv) surface functionalization with biologically active ligands that enabled specific targeting. The construction method is very versatile and was illustrated by the coupling of a small library of ligands (e.g., biotin, curcumin derivatives, and antibody), resulting in high affinity toward (i) murine lung carcinoma (M109) and human breast cancer (MCF7) cell lines, even in a coculture environment with healthy cells and (ii) the β-amyloid peptide 1-42 (Aβ(1-42)), believed to be the most representative and toxic species in AD, both under its monomeric and fibrillar forms. In the case of AD, the ligand-functionalized NPs exhibited higher affinity toward Aβ(1-42) species comparatively to other kinds of colloidal systems and led to significant aggregation inhibition and toxicity rescue of Aβ(1-42) at low molar ratios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn3004372 | DOI Listing |
Anal Biochem
January 2025
Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, CIATEJ, 45019, Zapopan, Jalisco, Mexico. Electronic address:
In this study, we propose a continuous assay that provides a high-throughput, efficient method for screening the regioselectivity of lipases at the sn-1,3 and sn-2 positions on triacylglycerols (TAGs). This assay measures the specific hydrolysis rates at the primary and secondary positions of TAGs derivates containing oleic (O) and punicic (P) acids. The method is based on the absorbance ratio of released punicic acid from the hydrolysis of sn-POP (sn-1,3 regiospecific lipases) and sn-OPO (sn-2 regiospecific lipases).
View Article and Find Full Text PDFChemistry
January 2025
Umeå Universitet: Umea Universitet, Department of Chemistry, Department of Chemistry, 90187, Umeå, SWEDEN.
Chemically induced dimerization/proximity (CID/CIP) systems controlled by chemical dimerizers (also known as molecular glues) provide valuable means for understanding and manipulating complex, dynamic biological systems. In this study, we present the development of versatile chemo-optogenetic systems utilizing azobenzene-based photoswitchable molecular glues (sMGs) for reversible protein dimerization controlled by visible light. These systems allow multiple cycles of light-induced dimerization, overcoming the limitations of irreversible photolysis in previous systems.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, Wuhan University, Wuhan 430072, China.
Flow injection mass spectrometry (FI-MS) is widely employed for high-throughput metabolome analysis, yet the absence of prior separation leads to significant matrix effects, thereby limiting the metabolome coverage. In this study, we introduce a novel photosensitive MS probe, iTASO-ONH, integrated with FI-MS to establish a high-throughput strategy for submetabolome analyses. The iTASO probe features a conjugated-imino sulfonate moiety for efficient photolysis under 365 nm irradiation and a reactive group for selective metabolite labeling.
View Article and Find Full Text PDFJ Drug Target
January 2025
Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon (Bk.), Pune-411041, Maharashtra, India.
Ferulic acid (FA) is a phenolic compound obtained naturally and is a versatile antioxidant identified for its potential in managing hypertension. However, its application is constrained due to its classification as a BCS Class IV moiety. To address this, we concentrated on improving its solubility and permeability by developing nanostructured lipid carriers (NLCs) of FA using emulsification probe sonication technique.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Switchable selectivity achieved by altering reaction conditions within the same photocatalytic system offers great advantages for sustainable chemical transformations and renewable energy conversion. In this study, we investigate an efficient photocatalytic methanol dehydrogenation with controlled selectivity by varying the concentration of nickel cocatalyst, using zinc indium sulfide nanocrystals as a semiconductor photocatalyst, which enables the production of either formaldehyde or ethylene glycol with high selectivity. Control experiments revealed that formaldehyde is initially generated and can either serve as a terminal product or intermediate in producing ethylene glycol, depending on the nickel concentration in the solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!