A method for predicting the ground state reduction potentials of organic molecules on the basis of the correlation of computed energy differences between the starting S(0) and one-electron-reduced D(0) species with experimental reduction potentials in acetonitrile has been expanded to cover 3.5 V of potential range and 74 compounds across 6 broad families of molecules. Utilizing the conductor-like polarizable continuum model of implicit solvent allows a global correlation that is computationally efficient and has improved accuracy, with r(2) > 0.98 in all cases and root mean square deviation errors of <90 mV (mean absolute deviations <70 mV) for either B3LYP/6-311+G(d,p) or B3LYP//6-31G(d) with an appropriate choice of radii (UAKS or UA0). The correlations are proven to be robust across a wide range of structures and potentials, including four larger (27-28 heavy atoms) and more conformationally flexible photochromic molecules not used in calibrating the correlation. The method is also proven to be robust to a number of minor student "mistakes" or methodological inconsistencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo300853k | DOI Listing |
JAMA Netw Open
January 2025
Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
Importance: Mental health issues among young people are increasingly concerning. Conventional psychological interventions face challenges, including limited staffing, time commitment, and low completion rates.
Objective: To evaluate the effect of a low-intensity online intervention on young people in Hong Kong experiencing moderate or greater mental distress.
Qual Life Res
January 2025
Shantou University Medical College, Shantou, 515041, China.
Purpose: To investigate whether surgery is more effective than follow-up in reducing psychological distress for patients with observable indeterminate pulmonary nodules (IPNs) and to assess if psychological distress can serve as a potential surgical indication for IPNs.
Methods: This prospective observational study included 341 patients with abnormal psychometric results, as measured by the Hospital Anxiety and Depression Scale (HADS). Of these, 262 patients opted for follow-up and 79 chose surgery.
Arch Microbiol
January 2025
Clinical Microbiology and PK-PD Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, J&K, 190005, India.
Tuberculosis (TB) remains a major global threat, with 10 million new cases and 1.5 million deaths each year. In multidrug-resistant tuberculosis (MDR-TB), resistance is most commonly observed against isoniazid (INH) and rifampicin (RIF), the two frontline drugs.
View Article and Find Full Text PDFAdv Ther
January 2025
General Medical Practice, Munich, Germany.
Introduction: Incidences of infections with Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2) are still high and treatment guidelines lack specific recommendations for outpatients with Coronavirus-induced disease 2019 (COVID-19). Phytomedicine ELOM-080, an enhancer of mucociliary clearance (MCC), showed benefits as add-on therapy in hospitalised COVID-19 patients.
Methods: This randomised, double-blind, placebo-controlled proof-of-concept study investigated whether outpatients with mild to moderate acute symptomatic COVID-19 would benefit from a 14-day treatment with ELOM-080 with regard to potential early treatment effects on cough and further typical COVID-19 symptoms.
3D Print Med
January 2025
AO Innovation Translation Center (AO ITC), AO Foundation, Davos, Switzerland.
Background: The emergence of 3D printing has revolutionized medical training and preoperative planning. However, existing models have limitations, prompting the development of newly designed flexible 3D-printed bone fracture models.
Methods: The designed flexible 3D-printed bone fracture models were evaluated by 133 trauma surgeons with different levels of experience for perceived value as educational tool or as preoperative planning tool.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!