Using time-lapse microscopy, the changes in L-929 cells shape were analyzed during a cell cycle. During this time the cells were established to pass through three spreading stages. The highest rate of the cell spreading was observed during the first 1.5 h of mitosis. In this period, the cell area increases approximately 3-3.5 times following sigmoid dependence. After a short plateau the augmentation of the cell area starts also as a sigmoid dependence. This period is longer (up to 6 h after the beginning of cell division) with an additional 1.5-fold augmentation of the cells size. Next, the augmentation of the cells area goes linearly up to the beginning of the following mitosis. After the mother L-929 cell division, the daughter cells remained to be bridged together in the fission furrow site almost in 100% cases. The structure known as an intercellular bridge is related to a late telophase. In this connected state the L-cells are spreading and migrating up to 2.13 +/- 0.06 h where upon they are separated. Transition of the daughter cells from a round shape to the spread one occurring with the simultaneous maintenance of the intercellular bridge during a strictly determined time allows us to consider this phenomenon as independent and not relating to mitosis. We suggest naming this junction between the daughter cells as the "posttelophase intercellular bridge".

Download full-text PDF

Source

Publication Analysis

Top Keywords

daughter cells
12
cells
8
cell area
8
sigmoid dependence
8
cell division
8
augmentation cells
8
intercellular bridge
8
cell
6
[dynamics spreading
4
spreading cells
4

Similar Publications

Role of Ciliary Neurotrophic Factor in Angiotensin II-Induced Hypertension.

Hypertension

January 2025

Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (S.A.P., I.Q., D. Arifaj, M.K., D. Argov, L.C.R., J.S.).

Background: Ciliary neurotrophic factor (CNTF), mainly known for its neuroprotective properties, belongs to the IL-6 (interleukin-6) cytokine family. In contrast to IL-6, the effects of CNTF on the vasculature have not been explored. Here, we examined the role of CNTF in AngII (angiotensin II)-induced hypertension.

View Article and Find Full Text PDF

CASK, a MAGUK family scaffold protein, regulates gene expression as a transcription co-activator in neurons. However, the mechanism of CASK nucleus translocation and the regulatory function of CASK in myeloid cells remains unclear. Here, we investigated its role in H5N1-infected macrophages.

View Article and Find Full Text PDF

Identification of a novel heterozygous GPD1 missense variant in a Chinese adult patient with recurrent HTG-AP consuming a high-fat diet and heavy smoking.

BMC Med Genomics

January 2025

Department of Critical Care Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China.

Background: Glycerol-3-phosphate dehydrogenase 1 (GPD1) gene defect can cause hypertriglyceridemia (HTG), which usually occurs in infants. The gene defect has rarely been reported in adult HTG patients. In the present study, we described the clinical and functional analyses of a novel GPD1 missense variant in a Chinese adult patient with recurrent hypertriglyceridemia‑related acute pancreatitis (HTG-AP), consuming a high-fat diet and smoking heavily.

View Article and Find Full Text PDF

Utilizing sc-linker to integrate single-cell RNA sequencing and human genetics to identify cell types and driver genes associated with non-small cell lung cancer.

BMC Cancer

January 2025

Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.

Background: Genome-wide association studies (GWAS) provide a powerful method for identifying the loci and genes that contribute to disease. However, in many cases, the specific cell types and states that confer disease risk through these genes remain unknown. Determining this relationship is crucial for identifying pathogenic processes and developing therapeutic strategies.

View Article and Find Full Text PDF

A de novo, mosaic and complex chromosome 21 rearrangement causes APP triplication and familial autosomal dominant early onset Alzheimer disease.

Sci Rep

January 2025

Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Copy number variation (CNV) of the amyloid-β precursor protein gene (APP) is a known cause of autosomal dominant Alzheimer disease (ADAD), but de novo genetic variants causing ADAD are rare. We report a mother and daughter with neuropathologically confirmed definite Alzheimer disease (AD) and extensive cerebral amyloid angiopathy (CAA). Copy number analysis identified an increased number of APP copies and genome sequencing (GS) revealed the underlying complex genomic rearrangement (CGR) including a triplication of APP with two unique breakpoint junctions (BPJs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!