A total mixture of phospho- and glycolipids from sea macrophytes Sargassum pallidum, Ulva fenestrata, Zostera marina was separated and the fatty acid composition was determined. Biological activity of the mixtures of polar lipids and natural antioxidants echinochrome A from flat sea urchin Scaphechinus mirabilis and polyphenolic complex from sea grass Zostera marina was studied in rats with experimental model of atherosclerosis and diabetes. These experiments revealed optimal compositions for mixtures of polar lipids and antioxidants, which possess high medical-corrective activity. Proposed mechanisms of action of the polar lipids (containing different polyunsaturated fatty acids) and antioxidants studied are presented. These compositions may be used for creation of new biologically-active additives and drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.18097/pbmc20125802189 | DOI Listing |
J Microbiol Biotechnol
December 2024
Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34430, Republic of Korea.
A Gram-stain-negative, facultative anaerobic rods, designated as strain 219JJ12-13, was isolated from a marine sponge, , in Jeju-do, Republic of Korea. The cells displayed catalase and oxidase activity and were non-motile. Strain 219JJ12-13 grew at 10-37°C (optimum, 25-30°C), pH 6.
View Article and Find Full Text PDFACS Sens
January 2025
Cancer Hospital of Dalian University of Technology, Shenyang 110042, China.
Intracellular morphological apical-basal polarity, regulated by conserved polarity proteins, plays a crucial role in cell migration and metastasis. In this study, using a genetically encoded Förster resonance energy transfer (FRET) biosensor to visually present the spatiotemporal stress state between the lipid rafts on the membrane and the linked actin, we first provide the evidence for the existence of intrinsic apical-basal stress polarity in tumor cells and demonstrate that this polarity is a prerequisite for the formation of flow-induced front-back stress polarity. Interestingly, our study revealed that the front-back stress polarity disappeared upon the disruption of intrinsic apical-basal stress discrepancy, resulting in a large attenuated cell migration activity reduced from 76.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Research and Innovation, MATIS, Reykjavk, Iceland.
A novel bacterium, designated 19SA41, was isolated from the air of the Icelandic volcanic island Surtsey. Cells of strain 19SA41 are Gram-stain-negative, strictly aerobic, non-motile rods and form pale yellow-pigmented colonies. The strain grows at 4-30 °C (optimum, 22 °C), at pH 6-10 (optimum, pH 7.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
Lysophosphatidic acid (LPA) exerts its physiological roles through the endothelialdifferentiation gene (EDG) family LPA receptors (LPAR1-3) or the non-EDG family LPA receptors (LPAR4-6). LPAR6 plays crucial roles in hair loss and cancer progression, yet its structural information is very limited. Here, we report the cryoelectron microscopy structure of LPA-bound human LPAR6 in complex with a mini G or G protein.
View Article and Find Full Text PDFLangmuir
January 2025
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
Understanding the interactions between lipid membranes and nucleotide drugs is crucial for nucleic acid therapy. Although several methods have been employed to evaluate nucleotide-lipid membrane interactions, these interactions can be complex; this complexity arises from how external factors, such as ionic strength or temperature, influence the lipid membrane's overall properties. In this study, we prepared a lipid membrane-immobilized monolithic silica (LMiMS) column for high-performance liquid chromatography (HPLC) analysis to understand interactions between the lipid membrane and nucleic acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!