The plantarflexors of the lower limb are often assumed to act as independent actuators, but the validity of this assumption is the subject of considerable debate. This study aims to determine the degree to which passive changes in gastrocnemius muscle length, induced by knee motion, affect the tension in the adjacent soleus muscle. A second aim is to quantify the magnitude of myofascial passive force transmission between gastrocnemius and adjacent soleus. Fifteen healthy volunteers participated. Simultaneous ultrasound images of the gastrocnemius and soleus muscles were obtained during passive knee flexion (0-90°), while keeping the ankle angle fixed at either 70° or 115°. Image correlation analysis was used to quantify muscle fascicle lengths in both muscles. The data show that the soleus muscle fascicles elongate significantly during gastrocnemius shortening. The approximate change in passive soleus force as a result of the observed change in fascicle length was estimated and appears to be <5 N, but this estimate is sensitive to the assumed slack length of soleus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00111.2012 | DOI Listing |
Front Sports Act Living
January 2025
Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, United States.
Introduction: In individuals with chronic post-stroke hemiparesis, slow walking speed is a significant concern related to inadequate propulsion of the paretic limb. However, an overlooked factor is this population's altered morphology of the Achilles tendon, which may compromise the propulsive forces by the paretic limb. This study aimed to explore changes in Achilles tendon morphology, including gross thickness and intra-tendinous collagen fiber bundle organization, following stroke-induced brain lesions.
View Article and Find Full Text PDFZhongguo Xue Xi Chong Bing Fang Zhi Za Zhi
December 2024
Department of Epidemiology, School of Public Health, Fudan University; Key Laboratory of Public Health Safety, Ministry of Education; Tropical Disease Research Center, Fudan University, Shanghai 200032, China.
The rapid development of artificial intelligence poses a huge impact on health and has become a core driving force for the new generation of the scientific and technological revolution in the field of healthcare. Recently, artificial intelligence has been gradually applied in the field of parasitic diseases and parasitology, including disease diagnosis, prognosis prediction, prediction of transmission risk, intelligent identification of vectors and intermediate hosts, and disease prevention and control, which facilitates the progress towards elimination of parasitic diseases. In addition, artificial intelligence provides highly efficient tools and approaches for healthcare workers and researchers.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Gastroenterology, Air Force Medical Center, No. 30 Fucheng Road, Haidian District, Beijing, 100142, China.
Background: Inflammatory bowel disease (IBD) is a chronic condition influenced by diet, which affects gut microbiota and immune functions. The rising prevalence of IBD, linked to Western diets in developing countries, highlights the need for dietary interventions. This study aimed to assess the impact of white kidney beans (WKB) on gut inflammation and microbiota changes, focusing on their effects on enteric glial cells (EGCs) and immune activity in colitis.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Pre- and post-synaptic events are regulated by liquid-liquid phase separation and this phenomenon requires multiple electrical forces. Both axonal transport and the organization of postsynaptic excitatory and inhibitory receptors are regulated by LLPS, with its mandatory electrical drivers ultimately determining our cognitive health and capacity.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.
(K,Na)NbO-based ceramics are deemed among the most promising lead-free piezoelectric materials, though their overall piezoelectric performance still lags behind the mainstream lead-containing counterparts. Here, we achieve an ultrahigh piezoelectric charge coefficient d ∼ 807 pC·N, along with a high longitudinal electromechanical coupling factor (k ∼ 88%) and Curie temperature (T ∼ 245 °C) in the (K,Na)(NbSb)O-BiNaZrO-BiFeO (KNN-xSb) system through structural flexibility and grain orientation strategies. Phenomenological models, phase field simulations and high-angle annular dark-field scanning transmission electron microscopy reveal that the structural flexibility originates from the high Coulomb force between K/Na ions and Sb ions in the KNN-xSb system, while the grain orientation promotes the displacement of B-site cations leveraging the engineered domain configuration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!