Rationale: Although the sodium channel locus SCN10A has been implicated by genome-wide association studies as a modulator of cardiac electrophysiology, the role of its gene product Nav1.8 as a modulator of cardiac ion currents is unknown.

Objective: We determined the electrophysiological and pharmacological properties of Nav1.8 in heterologous cell systems and assessed the antiarrhythmic effect of Nav1.8 block on isolated mouse and rabbit ventricular cardiomyocytes.

Methods And Results: We first demonstrated that Scn10a transcripts are identified in mouse heart and that the blocker A-803467 is highly specific for Nav1.8 current over that of Nav1.5, the canonical cardiac sodium channel encoded by SCN5A. We then showed that low concentrations of A-803467 selectively block "late" sodium current and shorten action potentials in mouse and rabbit cardiomyocytes. Exaggerated late sodium current is known to mediate arrhythmogenic early afterdepolarizations in heart, and these were similarly suppressed by low concentrations of A-803467.

Conclusions: Scn10a expression contributes to late sodium current in heart and represents a new target for antiarrhythmic intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412150PMC
http://dx.doi.org/10.1161/CIRCRESAHA.112.265173DOI Listing

Publication Analysis

Top Keywords

sodium current
16
late sodium
12
sodium channel
8
modulator cardiac
8
mouse rabbit
8
low concentrations
8
sodium
6
current
5
blocking scn10a
4
scn10a channels
4

Similar Publications

Enabling High-Voltage and Long Lifespan Sodium Batteries via Single-Crystal Layer-Structured Oxide Cathode Material.

ACS Nano

January 2025

Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China.

Manganese-based layer-structured transition metal oxides are considered promising cathode materials for future sodium batteries owing to their high energy density potential and industrial feasibility. The grain-related anisotropy and electrode/electrolyte side reactions, however, constrain their energy density and cycling lifespan, particularly at high voltages. Large-sized single-crystal O3-typed Na[NiMnCuTi]O was thus designed and successfully synthesized toward high-voltage and long-lifespan sodium batteries.

View Article and Find Full Text PDF

The current investigation assessed the beneficial impacts of dietary sodium chloride (NaCl) on the growth performance, oxidant/antioxidant, and immune responses of Nile tilapia (Oreochromis niloticus) and its adaptability to different salinity levels. After acclimating the fish to the laboratory conditions for 2 weeks, the acclimated fish (10.5 ± 0.

View Article and Find Full Text PDF

Current study evaluates the beneficial role of bio-functionalized zinc ferrite nanoparticles fabricated from an aqueous extract of Decalepis hamiltonii leaves (DHLE.ZnFeO NPs) on sodium nitrite (NaNO) and Diclofenac (DFC) induced oxidative stress in RBCs and Sprague Dawley male rat models. DHLE.

View Article and Find Full Text PDF

Background: Reduction of intracellular Na accumulation through late Na current inhibition has been recognized as a target for cardiac Ca handling which underlies myocardial contractility and relaxation in heart failure (HF). Riluzole, an Na channel blocker with enhancement of Ca-activated K channel function, used for management of amyotrophic lateral sclerosis (ALS), is effective in suppressing Ca leak and therefore may improve cardiac function.

Objectives: The study aim was to investigate whether riluzole lowers HF incidence.

View Article and Find Full Text PDF

The role played by anionic channels in diabetic kidney disease (DKD) is not known. Chloride channel accessory 1 (CLCA1) facilitates the activity of TMEM16A (Anoctamin-1), a Ca2+-dependent Cl- channel. We examined if CLCA1/TMEM16A had a role in DKD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!