Recent evidence suggests that integrin-mediated adhesion of neurons has immediate functional implications for learning and memory. In addition, adhesion of neurons to artificial substrates often determines the effectiveness and life of implants in the brain and peripheral nervous system. In this study, we present a novel biochip capable of simultaneous, quantitative, real-time monitoring of integrin-mediated adhesion and electrophysiology of primary neurons in vitro. The proposed technology combines acoustic micro-resonators capable of tracking changes in mechanics of the adhering neuronal layer, and microelectrode arrays for recording extracellular unit activity. Our results showed in four different experimental paradigms that the acoustic sensor response to adhering cells is correlated to integrin-mediated adhesion and that the micro-sensor is capable of monitoring the dynamics of neuronal adhesion over a period of 9 days. Finally, using our unique dual measurement platform, we performed simultaneous, real-time measurement of integrin-mediated adhesion and single cell electrophysiology in a neuronal culture. The sensitivities of the micro-resonators were 4-5 orders of magnitude greater than the sensitivity of the macro-scale resonators in response to adhering neurons. This multi-functional sensor platform offers insight into the interplay between integrin-mediated adhesion and neural function on a temporal resolution beyond any currently available experimental method and can therefore potentially lead to novel discoveries on the interactions between neuronal adhesion and function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2lc40190h | DOI Listing |
bioRxiv
January 2025
Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, United States.
Cells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb.
View Article and Find Full Text PDFJ Mol Cell Cardiol
January 2025
Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA. Electronic address:
Vinculin (VCL) is a key adapter protein located in force-bearing costamere complexes, which mechanically couples the sarcomere to the ECM. Heterozygous vinculin frameshift genetic variants can contribute to cardiomyopathy when external stress is applied, but the mechanosensitive pathways underpinning VCL haploinsufficiency remain elusive. Here, we show that in response to extracellular matrix stiffening, heterozygous loss of VCL disrupts force-mediated costamere protein recruitment, thereby impairing cardiomyocyte contractility and sarcomere organization.
View Article and Find Full Text PDFCell Biosci
January 2025
New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA.
Spontaneous preterm birth (sPTB) poses significant challenges, affecting neonatal health and neurodevelopmental outcomes worldwide. The specific effects of placental trophoblasts on the pathological development of sPTB subtypes-preterm premature rupture of fetal membranes (pPROM) and spontaneous preterm labor (sPTL)-are not fully understood, making it crucial to uncover these impacts for the development of effective therapeutic strategies. Using single-nucleus RNA sequencing, we investigated transcriptomic and cellular differences at the maternal-fetal interface in pPROM and sPTL placentas.
View Article and Find Full Text PDFBiomolecules
December 2024
Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 980-0845, Miyagi, Japan.
Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase pivotal in cellular signal transduction, regulating cell adhesion, migration, growth, and survival. However, the regulatory mechanisms of FAK during tumorigenesis and progression still need to be fully understood. Our previous study demonstrated that -GlcNAcylation regulates integrin-mediated cell adhesion.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States.
ConspectusSynthetic extracellular matrix (ECM) engineering is a highly interdisciplinary field integrating materials and polymer science and engineering, chemistry, cell biology, and medicine to develop innovative strategies to investigate and control cell-matrix interactions. Cellular microenvironments are complex and highly dynamic, changing in response to injury and disease. To capture some of these critical dynamics , biomaterial matrices have been developed with tailorable properties that can be modulated in the presence of cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!