A passive millimeter-wave (mmW) sensor operating at a frequency of 77 GHz is built and characterized. The sensor is a single pixel sensor that raster scans to create an image. Optical upconversion is used to convert the incident mmW signal into an optical signal for detection. Components were picked to be representative of a single element in a distributed aperture system. The performance of the system is analyzed, and the noise equivalent temperature difference is found to be 0.5 K (for a 1 s integration time) with a diffraction limited resolution of ~8 mrad. Representative images are shown that demonstrate the phenomenology associated with this spectrum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.51.004157 | DOI Listing |
Inorg Chem
December 2024
School of Chemistry and Chemical Engineering/Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, P. R. China.
Thermal quenching (TQ) of luminescence presents a significant barrier to the effective use of optical thermometers in high-temperature applications. Herein, we report a novel uniaxial negative thermal expansion (NTE) phosphor, YMoO:Yb,Nd, synthesized by a solid-state reaction. Under 980 nm laser excitation, it exhibits excellent thermally enhanced near-infrared (NIR) upconversion luminescence (UCL) performance.
View Article and Find Full Text PDFNanoscale
December 2024
Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
As a nonlinear optical phenomenon, upconversion (UC) occurs when two or more low-energy excitation photons are sequentially absorbed and emitted. Upconversion nanomaterials exhibit superior photostability, non-invasiveness, a unique near-infrared anti-Stokes shift, and enhanced tissue penetration capability. However, general upconversion nanomaterials typically utilize visible light (400-700 nm) for excitation, leading to limited tissue penetration, background signal interference, limited excitation efficiency and imaging quality issues due to tissue absorption and scattering.
View Article and Find Full Text PDFChemistry
December 2024
Tongji University, School of Chemical Science and Engineering, 1239 Siping Road, Shanghai, CHINA.
Upconverted circularly polarized luminescence (UC-CPL) active organic and organic-inorganic composite materials have garnered increasing attention due to their vast potential applications in areas such as 3D displays, encryptions, spintronics and optoelectronic devices. However, effective methods for fabricating chiral inorganic materials exhibiting UC-CPL remain a challenge. Herein, we propose an approach for the synthesis of UC-CPL active chiral mesostructured CeO2 powders (CMCs) via a hydrothermal growth method, using L/D-aspartic acid as symmetry-breaking and structure-directing agents.
View Article and Find Full Text PDFAnal Chem
December 2024
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
Nowadays, optical tweezers play a vital role not only in optical manipulation but also in bioassay. As principal optical trapping objects, microbeads can combine optical tweezers with suspension array technology, with amply focused laser beams and adequately concentrated tags contributing to highly sensitive detection. In view of the inefficiency of conventional single-trap optical tweezers, multitrap systems are developed.
View Article and Find Full Text PDFNano Lett
December 2024
School of Physics and Astronomy, Faculty of Science, Monash University, Melbourne, Victoria 3800, Australia.
Ultrathin and low-loss phase-change materials (PCMs) are highly valued for their fast and effective phase transitions and applications in reconfigurable photonic chips, metasurfaces, optical modulators, sensors, photonic memories, and neuromorphic computing. However, conventional PCMs mostly suffer from high intrinsic losses in the near-infrared (NIR) region, limiting their potential for high quality factor (-factor) resonant metasurfaces. Here we present the design and fabrication of tunable bound states in the continuum (BIC) metasurfaces using the ultra-low-loss PCM SbSe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!