The area postrema is one of the circumventricular organs, lacks a blood-brain barrier, and is well known as the chemoreceptor trigger zone for emesis. Area postrema neurons are sensitive to emetic chemical substances carried in the blood plasma. Our previous study demonstrated the presence of 3 types of neurons characterized by different ion channels expressed in each cell type, but the type or types of area postrema neurons involved in the induction of nausea and/or emesis have remained unclear. To clarify the role of the most populous cells, which express the hyperpolarization-activated cation channel (H-channel), in induction of nausea and/or emesis, we investigated the effects of ZD7288 (an H-channel inhibitor) on apomorphine-induced conditioned taste aversion (CTA) to saccharin and c-Fos expression in the area postrema. We found that ZD7288 inhibited the acquisition of CTA and reduced apomorphine-induced c-Fos expression in the area postrema, indicating the involvement of the cells expressing H-channels in the induction of nausea and/or emesis. Finally, we discuss the role of cells expressing H-channels in the mechanism of nausea and/or vomiting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.physbeh.2012.06.002 | DOI Listing |
Heliyon
January 2025
Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia.
Introduction: The area postrema, located on the floor of the fourth ventricle, regulates vomiting, fluid balance, osmoregulation, and immunomodulation. First documented in 1896, it has been a subject of scientific interest ever since. Area postrema syndrome (APS) is characterised by intractable nausea, vomiting, or hiccups, typically associated with neuromyelitis optica spectrum disorder (NMOSD).
View Article and Find Full Text PDFCurr Opin Neurobiol
January 2025
Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. Electronic address:
Our internal sensory systems encode various gut-related sensations, such as hunger, feelings of fullness, and nausea. These internal feelings influence our eating behaviors and play a vital role in regulating energy balance. Among them, the neurological basis for nausea has been the least well characterized, which has hindered comprehension of the connection between these sensations.
View Article and Find Full Text PDFJ Neuroendocrinol
January 2025
Department of Psychology, Columbia University, New York, New York, USA.
Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins. Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain.
View Article and Find Full Text PDFMult Scler
January 2025
Department of Neurology, National Hospital Organization, Fukuoka Higashi Medical Center, Koga, Japan.
An 80-year-old man with aquaporin-4-antibody-positive neuromyelitis optica spectrum disorder presented with a 2-week history of cough and hiccups, followed by progressive bilateral lower limb weakness, a bandlike burning sensation in the upper body, and urinary retention. Magnetic resonance imaging showed area postrema and thoracic central medullary lesions. Thorax computed tomography showed bilateral upper lung lobe consolidations.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Neurology and Neurosurgery, Mcgill University, Montreal, QC, Canada.
Introduction: Although neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody disease (MOGAD) are rare diseases, they pose a significant burden on both society and the healthcare system. This study aims to discuss the demographics and patient characteristics of these diseases in a single center in the United Arab Emirates (UAE).
Methods: This is a retrospective, descriptive study that included patients with either NMOSD or MOGAD treated at Rashid Hospital, UAE during the period between January 2019 and January 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!