The purpose of this study was to examine if differences in social life histories correspond to intraspecific variation in total or regional brain volumes in the African lion (Panthera leo) and cougar (Puma concolor). African lions live in gregarious prides usually consisting of related adult females, their dependent offspring, and a coalition of immigrant males. Upon reaching maturity, male lions enter a nomadic and often, solitary phase in their lives, whereas females are mainly philopatric and highly social throughout their lives. In contrast, the social life history does not differ between male and female cougars; both are solitary. Three-dimensional virtual endocasts were created using computed tomography from the skulls of 14 adult African lions (8 male, 6 female) and 14 cougars (7 male, 7 female). Endocranial volume and basal skull length were highly correlated in African lions (r = 0.59, p < 0.05) and in cougars (r = 0.67, p < 0.01). Analyses of total endocranial volume relative to skull length revealed no sex differences in either African lions or cougars. However, relative anterior cerebrum volume comprised primarily of frontal cortex and surface area was significantly greater in female African lions than males, while relative posterior cerebrum volume and surface area was greater in males than females. These differences were specific to the neocortex and were not found in the solitary cougar, suggesting that social life history is linked to sex-specific neocortical patterns in these species. We further hypothesize that increased frontal cortical volume in female lions is related to the need for greater inhibitory control in the presence of a dominant male aggressor.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000338670DOI Listing

Publication Analysis

Top Keywords

african lions
20
social life
12
male female
12
african lion
8
lion panthera
8
panthera leo
8
leo cougar
8
cougar puma
8
puma concolor
8
life history
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!