The immunostimulatory activity of phosphodiester DNA containing unmethylated cytosine-phosphate-guanine (CpG) dinucleotides, or CpG motifs, was significantly increased by the formation of Y-, X-, or dendrimer-like multibranched shape. These results suggest the possibility that the activity of CpG DNA is a function of the structural properties of branched DNA assemblies. To elucidate the relationship between them, we have designed and developed nanosized DNA assemblies in polypod-like structures (polypod-like structured DNA, or polypodna for short) using oligodeoxynucleotides (ODNs) containing CpG motifs and investigated their structural and immunological properties. Those assemblies consisting of three (tripodna) to eight (octapodna) ODNs were successfully obtained, but one consisting of 12 ODNs was not when 36-mer ODNs were annealed under physiological sodium chloride concentration. High-speed atomic force microscopy revealed that these assemblies were in polypod-like structures. The apparent size of the products was about 10 nm in diameter, and there was an increasing trend with an increase in ODN length or with the pod number. Circular dichroism spectral data showed that DNA in polypodna preparations were in the B-form. The melting temperature of polypodna decreased with increasing pod number. Each polypodna induced the secretion of tumor necrosis factor-α and interleukin-6 from macrophage-like RAW264.7 cells, with the greatest induction by those with hexa- and octapodna. Increasing the pod number increased the uptake by RAW264.7 cells but reduced the stability in serum. These results indicate that CpG DNA-containing polypodna preparations with six or more pods are a promising nanosized device with biodegradability and high immunostimulatory activity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn300727jDOI Listing

Publication Analysis

Top Keywords

dna assemblies
12
assemblies polypod-like
12
polypod-like structures
12
cpg motifs
12
pod number
12
nanosized dna
8
immunostimulatory activity
8
dna polypodna
8
polypodna preparations
8
increasing pod
8

Similar Publications

Background: Hepatocellular carcinoma (HCC) is one of the most common and highly lethal cancers worldwide. RIO kinase 1 (RIOK1), a protein kinase/ATPase that plays a key role in regulating translation and ribosome assembly, is associated with a variety of malignant tumors. However, the role of RIOK1 in HCC remains largely unknown.

View Article and Find Full Text PDF

The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.

View Article and Find Full Text PDF

Lab on a single microbead: An enzyme-free strategy for the sensitive detection of microRNA via efficient localized catalytic hairpin assembly.

Anal Chim Acta

February 2025

Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China. Electronic address:

Background: Accurate quantification of microRNA (miRNA) is of great significance because it provides opportunities for the accurate early diagnosis of a series of human diseases including cancers. Currently, complicated nucleic acid amplification technologies are always required for the highly sensitive miRNA detection. The introduction of nucleic acid signal amplification coupled with various enzymes will inevitably lead to tedious work and increase the complexity of the analysis process.

View Article and Find Full Text PDF

Developing multifunctional nanomedicines represents a frontier. We have engineered a high-capacity DNA vector basing rolling circle amplification for the delivery of copper sulfide nanoparticles (CuS NPs) and doxorubicin (DOX), coupled with multivalent aptamers (MA) that precisely target tumors, culminating in a multifunctional nanoplatform (RMALCu@DOX), which combines the chemotherapy (CT)/photothermal therapy (PTT)/chemodynamic therapy (CDT). The vector (RMAL) boasts exceptional biocompatibility and incorporates multiple copy units, enabling the precise loading of numerous CuS NPs, forming RMALCu which possesses a robust photothermal effect and superior Fenton-like catalytic activity, heralding a project of minimally invasive dual-mode (PTT/CDT) therapy.

View Article and Find Full Text PDF

Structure and assembly mechanisms of the microbial community on an artificial reef surface, Fangchenggang, China.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.

The construction of artificial reefs (ARs) is an effective way to restore habitats and increase and breed fishery resources in marine ranches. However, studies on the impacts of ARs on the structure, function, and assembly patterns of the bacterial community (BC), which is important in biogeochemical cycles, are lacking. The compositions, diversities, assembly patterns, predicted functions, and key environmental factors of the attached and free-living microbial communities in five-year ARs (O-ARs) and one-year ARs (N-ARs) in Fangchenggang, China, were analyzed via 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!