Background: The vitamin D3 receptor (VDR) is responsible for mediating the pleiotropic and, in part, cell-type-specific effects of 1,25-dihydroxyvitamin D3 (calcitriol) on the cardiovascular and the muscle system, on the bone development and maintenance, mineral homeostasis, cell proliferation, cell differentiation, vitamin D metabolism, and immune response modulation.

Results: Based on data obtained from genome-wide yeast two-hybrid screenings, domain mapping studies, intracellular co-localization approaches as well as reporter transcription assay measurements, we show here that the C-terminus of human PIM-1 kinase isoform2 (amino acid residues 135-313), a serine/threonine kinase of the calcium/calmodulin-regulated kinase family, directly interacts with VDR through the receptor's DNA-binding domain. We further demonstrate that PIM-1 modulates calcitriol signaling in HaCaT keratinocytes by enhancing both endogenous calcitriol response gene transcription (osteopontin) and an extrachromosomal DR3 reporter response.

Conclusion: These results, taken together with previous reports of involvement of kinase pathways in VDR transactivation, underscore the biological relevance of this novel protein-protein interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404970PMC
http://dx.doi.org/10.1186/1471-2199-13-18DOI Listing

Publication Analysis

Top Keywords

pim-1 kinase
8
vitamin receptor
8
kinase
5
kinase interacts
4
interacts dna
4
dna binding
4
binding domain
4
domain vitamin
4
receptor kinase
4
kinase implicated
4

Similar Publications

PIM1 instigates endothelial-to-mesenchymal transition to aggravate atherosclerosis.

Theranostics

January 2025

Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Shandong, China.

Article Synopsis
  • Endothelial-to-mesenchymal transition (EndMT) is a process where endothelial cells transform into a different cell type, contributing to the dysfunction that initiates atherosclerosis, but the exact triggers in atherosclerotic environments are not well understood.
  • Research involving single-cell sequencing in mice on a high-fat diet showed that PIM1, a protein, is expressed in both endothelial cells and atherosclerotic lesions and plays a crucial role in the progression of atherosclerosis.
  • Knockdown of PIM1 in endothelial cells reduced atherosclerosis and EndMT by affecting key proteins and pathways associated with cell transformation, suggesting that targeting this pathway could be a potential therapeutic approach.
View Article and Find Full Text PDF

RBM19 promotes the progression of prostate cancer under docetaxel treatment via SNHG21/PIM1 axis.

Cell Biol Toxicol

December 2024

Department of Urology, Jinjiang Municipal Hospital, Luoshan Section, No. 16 Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.

RBM family proteins plays the critical role in the progression of numerous tumors. However, whether RBM family proteins involved in prostate cancer (PCa) progression is remain elucidated. In our study, an RNAi screen containing shRNA library targeting 54 members of the RBM family was applied to identify the critical RBM proteins involved in prostate cancer progression under docetaxel treatment, and RBM19 was selected.

View Article and Find Full Text PDF

Background: Abdominal aortic aneurysm (AAA) is a serious life-threatening vascular disease, and its ferroptosis/cuproptosis markers have not yet been characterized. This study was aiming to identify markers associated with ferroptosis/cuproptosis in AAA by bioinformatics analysis combined with machine learning models and to perform experimental validation.

Methods: This study used three scRNA-seq datasets from different mouse models and a human PBMC bulk RNA-seq dataset.

View Article and Find Full Text PDF

FDA-approved drugs as PIM-1 kinase inhibitors: A drug repurposed approach for cancer therapy.

Int J Biol Macromol

December 2024

Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi 110025, India. Electronic address:

PIM-1 kinase, a member of the Serine/Threonine kinase family, has emerged as a promising therapeutic target in various cancers due to its role in promoting tumor growth and resistance to conventional therapies. In this study, we employed a structure-based approach to screen 3800 FDA-approved drugs to discover potential inhibitors of PIM-1. After an initial selection of 50 candidates based on high docking scores, four drugs, stanozolol, alfaxalone, rifaximin, and telmisartan, were identified as strong PIM-1 binders, interacting with key residues in the ATP-binding pocket of the kinase.

View Article and Find Full Text PDF

Harnessing natural compounds for PIM-1 kinase inhibition: A synergistic approach using virtual screening, molecular dynamics simulations, and free energy calculations.

Cell Mol Biol (Noisy-le-grand)

November 2024

Department of Health Informatics, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia .

Cancer has substantial economic ramifications for healthcare systems. PIM kinases, specifically PIM-1, are commonly upregulated in different types of cancers, thereby promoting cancer development. PIM-1 inhibitors have garnered interest for their potential efficacy in cancer therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!