Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Green chemistry is a way to avoid threats to human health and the environment in chemical processes, including analytical methodology. According to the 12 principles provided by ACS Green Chemistry Institute, first described by Anastas and Warner, prevention of waste generation should be first considered as an alternative to ways of treating waste. Therefore, analytical techniques that may reduce solvent waste are of great interest towards greener analysis. High-field asymmetric waveform ion mobility spectrometry (FAIMS) utilizes electrical fields to achieve separation, post an ionization source, and could provide an alternative method for separation and reduce solvent use in comparison with traditional HPLC methodologies. In this article, the operational principles and developments of FAIMS will be discussed, including the advantages of adding solvent vapor to the carrier gas. In addition, applications and challenges of implementing FAIMS technology will also be discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/bio.12.110 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!