[Compositional characteristics and roles of soil mineral substances in depressions between hills in karst region].

Ying Yong Sheng Tai Xue Bao

Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.

Published: March 2012

Based on the investigation and analysis of seven soil mineral substance variables, nine vegetation factors, four topographical factors, and ten soil physicochemical factors in the 200 m x 40 m dynamic monitoring plots in farmland, forest plantation, secondary forest, and primary forest in the depressions between hills in karst region, and by using traditional statistical analysis, principal component analysis (PCA), and canonical correlation analysis (CCA), this paper studied the compositional characteristics and roles of soil mineral substances as well as the coupling relationships between the mineral substances and the vegetation, topography, and other soil properties. In the depressions, soil mineral substances were mainly composed of SiO2, Al2O3, K2O, and Fe2O3, whose contents were obviously lower than the mean background values of the soils in the world and in the zonal red soils at the same latitudes. The soil CaO and MgO contents were at medium level, while the soil MnO content was very low. The composition of soil mineral substances and their variation degrees varied with the ecosystems, and the soil development degree also varied. There was a positive correlation between vegetation origin and soil origin, suggesting the potential risk of rock desertification. Due to the high landscape heterogeneity of the four ecosystems, PCA didn't show good effect in lowering dimension. In all of the four ecosystems, soil mineral substances were the main affecting factors, and had very close relationships with vegetation, topography, and other soil properties. Especially for SiO2, CaO, and MnO, they mainly affected the vegetation species diversity and the soil organic matter, total nitrogen, and total potassium. This study indicated that soil mineral substances were the one of the factors limiting the soil fertility and vegetation growth in the depressions between hills in karst region. To effectively use the soil mineral resources and rationally apply mineral nutrients would have significances in the restoration and reconstruction of karst degraded ecosystems.

Download full-text PDF

Source

Publication Analysis

Top Keywords

soil mineral
32
mineral substances
28
soil
17
depressions hills
12
hills karst
12
mineral
10
characteristics roles
8
roles soil
8
karst region
8
vegetation topography
8

Similar Publications

Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).

View Article and Find Full Text PDF

The superposition of heavy metals (HMs) from multiple anthropogenic sources in geochemical anomaly areas makes it difficult to discriminate prime sources in atmospheric HMs. This study utilized a combination of microscopic features, positive matrix factorisation, and Pb isotope fingerprints to trace the main sources of HMs bound to total suspended particulates (TSP) at a pollution site (Msoshui: MS) and control site (Lushan: LS) in northwestern Guizhou. The results reveal that the concentrations of Cd, Pb, Cr, As, Cu, Ni, and Zn in the TSP of LS are 3.

View Article and Find Full Text PDF

Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.

View Article and Find Full Text PDF

With the advancement of ecological and environmental protection construction, the research on the modification of expansive soil using environmentally friendly polymers can make up for the harm to the ecological environment caused by traditional modification. Mechanical and microscopic properties of modified expansive soils were analyzed through indoor tests. The results showed that the liquid limit and plasticity index decreased by 52.

View Article and Find Full Text PDF

Interaction of micro and nanoplastics (MNPs) with agricultural stored products and their pests.

Sci Total Environ

January 2025

Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, China. Electronic address:

Micro and nanoplastics (MNPs) pose significant environmental concerns due to their potential implications for ecosystems and human health. While previous research has primarily focused on the environmental impacts (aquatic ecosystem, soil health) of MNPs, this review investigates their interactions with agricultural stored products, specifically their effects on stored product pests and grain quality. MNPs can infiltrate grains through various pathways, including atmospheric deposition, plastic residues from cultivation, and pest activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!