A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Platanus orientalis foliar N% and delta15 N responses to nitrogen of atmospheric wet deposition in urban area]. | LitMetric

[Platanus orientalis foliar N% and delta15 N responses to nitrogen of atmospheric wet deposition in urban area].

Huan Jing Ke Xue

State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.

Published: April 2012

Leaves of Platanus orientalis were collected since Mar. 2009 till Apr. 2010, in an urban area at Guiyang. After mass of experiments and analysis, we carried out constructing the temporal variation of foliar N% and delta15 N: both higher in Spring/Summer, lower in Autumn, no data of Winter because of leaf abscission. Results showed that foliar N% varied from 1.48% to 5.27%, with an annual average of 3.36%, while the average concentration of total N in rhizospheric soil was 0.29%. The foliar N% rose and fell relative to DIN in rainwater (range from 0.57 mg x L(-1) to 6.74 mg x L(-1)), indicating that the N% content in foliar tissue of plant was approximately proportional to atmospheric N inputs. The range of foliar delta15N were from 4.48 per thousand to 8.39 per thousand, with the average of 6.33 per thousand, much higher than the delta15N-NH4+ of rain water (-19.76 per thousand(-) -10.41 per thousand) and delta15TN of rhizospheric soil (3.19 per thousand +/- 1.04 per thousand). Besides, a good uniform correlation between foliar delta15N and delta15N-NH4+ of rain water were found. As synthesis of two main N sources, the more positive delta15N values of Platanus orientalis can be explained by isotopic fractionation during N uptake and basipetal translocation. These responses of both foliar N% and delta15N to atmospheric nitrogen deposition, revealed the potential value in using vascular leaves as bio-monitors for assessment of N deposition, furthermore, for prevention and control of air pollution in urban ecosystem.

Download full-text PDF

Source

Publication Analysis

Top Keywords

foliar delta15n
12
foliar
8
foliar delta15
8
platanus orientalis
8
rhizospheric soil
8
delta15n-nh4+ rain
8
rain water
8
[platanus orientalis
4
orientalis foliar
4
delta15 responses
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!