The title complex, [Cu(NO(3))(C(3)H(8)N(2)S(2))(2)]NO(3), represents a low-symmetry polymorph (P-1, Z = 4) of a previously reported form [P-1, Z = 2; Ali et al. (2011 ▶). Polyhedron, 30, 542-548]. The Cu(II) atom in each independent cation is found within a distorted square-pyramidal N(2)S(2)O coordination geometry defined by two N,S-bidentate ligands and an O atom derived from a monodentate nitrate. The primary difference between the cations is found in the relative orientations of the coordinated nitrate groups, which are directed to opposite sides of the mol-ecule. Supra-molecular layers along [110] and sustained by N-H⋯O inter-actions feature in the crystal packing. These are connected along the c axis by C-H⋯O inter-actions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3379110PMC
http://dx.doi.org/10.1107/S1600536812021423DOI Listing

Publication Analysis

Top Keywords

bis2s-dimethyl-dithio-carbazate-κ2n3snitrato-κocopperii nitrate
4
nitrate title
4
title complex
4
complex [cuno3c3h8n2s22]no3
4
[cuno3c3h8n2s22]no3 represents
4
represents low-symmetry
4
low-symmetry polymorph
4
polymorph p-1
4
p-1 reported
4
reported form
4

Similar Publications

Objectives: This study explores the relationship between obesity, endothelial dysfunction, and the critical role of oxidative stress biomarkers in subclinical atherosclerosis.

Design & Methods: The study included 114 adolescents aged 12-17 years from Juiz de Fora, Brazil, divided into 40 individuals with obesity and 74 controls. Physical and biochemical assessments were conducted, including measurements of Brachial Flow-Mediated Dilation (BFMD), Carotid Intima-Media Thickness (IMT), and oxidative biomarkers such as nitrite, nitrate, and 8-isoprostane.

View Article and Find Full Text PDF

Nitrate (NO) pollution in groundwater is a worldwide environmental issue, particularly in developed planting-breeding areas where there is a substantial presence of nitrogen-related sources. Here, we explored the key sources and potential health risks of NO in a typical planting-breeding area in the North China Plain based on dual stable isotopes and Monte Carlo simulations. The analysis results revealed that the NO concentration ranged from 0.

View Article and Find Full Text PDF

Bimetallic synergy in non-precious metal Mn/Ba-SSZ-13 zeolite for improving NO storage capacity at low temperatures.

J Hazard Mater

January 2025

Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China. Electronic address:

Pd-zeolite is considered one of the most promising passive NO adsorber (PNA) materials for NO purification in diesel vehicles during cold start. Nevertheless, the scarcity and high cost of the precious metal Pd restrict the industrialisation of Pd-zeolites as PNA. This work developed a bimetallic Mn and Ba co-modified SSZ-13 as non-precious metal PNA material.

View Article and Find Full Text PDF

Impact of climate change and land management on nitrate pollution in the high plains aquifer.

J Environ Manage

January 2025

Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA. Electronic address:

High concentrations of nitrate in groundwater pose risks to human and environmental health. This study evaluates the potential impact of climate change, land use, and fertilizer application rates on groundwater nitrate levels in the High Plains Aquifer under four Shared Socioeconomic Pathway (SSP) scenarios. A random forest model, with predictors such as fertilizer application rates, cropland coverage, and climate variables from six Coupled Model Intercomparison Project models, is used to project future nitrate concentrations.

View Article and Find Full Text PDF

Cyanobacterial phycoremediation: a sustainable approach to dairy wastewater management.

Environ Technol

January 2025

Botany Discipline, School of Biological Sciences and Biotechnology, Goa University, Goa, India.

The dairy industry is a significant sector within the food industries, known for its high-water consumption and consequent generation of dairy wastewater (DWW), which is rich in pollutants like Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). Improper disposal of DWW poses serious environmental challenges, including eutrophication and highlighting the need for sustainable biological treatment methods. This study investigates the potential of indigenous cyanobacterial strains , , , and for the bioremediation of DWW.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!