The radioactivities of (234+235)U, (232)Th, (40)K and (137)Cs were measured in the coastal sediments of the western Mediterranean Sea between Alexandria and Salloum, Egypt. The recorded activities of the natural radionuclides were within the range of those measured worldwide. The highest activities of (234+235)U and (40)K (166.5 ± 7.7; 365.8 ± 2.3 Bq kg(-1) dry weight) were measured at Sidi Krir station while El-Max station recorded the highest (232)Th activity (22.7 ± 0.6 Bq kg(-1) dry weight) indicating that these radionuclides may accumulate in ionic and particulate forms from the drainage systems of the fertiliser, petrochemical and paper industries and from agricultural drains and also as the drifted particulates from longshore currents and accretion processes. The lowest (234+235)U activities were recorded at Salloum and the lowest (232)Th and (40)K activities were recorded at El-Hammam, indicating that the accretion process is more active in the eastern Mediterranean. Salloum recorded the highest activity levels for (137)Cs (7.9 ± 0.4 Bq kg(-1) dry weight) showing significant increases of the artificial (137)Cs westwards that may be indicative of to the anthropogenic sources from the northern Mediterranean.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncs104DOI Listing

Publication Analysis

Top Keywords

kg-1 dry
12
dry weight
12
coastal sediments
8
mediterranean sea
8
232th 40k
8
recorded highest
8
activities recorded
8
recorded
5
radioactive-elements coastal
4
mediterranean
4

Similar Publications

Land cover changes reduce dust aerosol concentrations in northern China (2000-2020).

Environ Res

January 2025

Henan Key Laboratory of Air Pollution Control and Ecological Security, Henan University, Kaifeng, Henan, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, Henan, 475004, China. Electronic address:

Dust aerosols significantly impact climate, human health, and ecosystems, but how land cover (LC) changes influence dust concentrations remains unclear. Here, we applied the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to assess the effects of LC changes on dust aerosol concentrations from 2000 to 2020 in northern China. Based on LC data derived from multi-source satellite remote sensing data, we conducted two simulation scenarios: one incorporating actual annual LC changes and another assuming static LC since 2000.

View Article and Find Full Text PDF

Aerosol transport and associated boundary layer thermodynamics under contrasting synoptic conditions over a semiarid site.

Sci Total Environ

January 2025

Department of Geosciences, Atmospheric Science Division, Texas Tech University, Lubbock, TX, USA; National Wind Institute, Texas Tech University, Lubbock, TX, USA. Electronic address:

Understanding the kinematics of aerosol horizontal transport and vertical mixing near the surface, within the atmospheric boundary layer (ABL), and in the overlying free troposphere (FT) is critical for various applications, including air quality and weather forecasting, aviation, road safety, and dispersion modeling. Empirical evidence of aerosol mixing processes within the ABL during synoptic-scale events over arid and semiarid regions (i.e.

View Article and Find Full Text PDF

Reducing enteric methane emissions from livestock is a key environmental challenge, as methane is a major pollutant. The complexity of animal biology and diverse diet compositions make it difficult to develop strategy to control methane production. This study examined the use of plant phenolic extracts of Madhuca longifolia (ML-7) as a feed additive combined with various ruminant diets and dosages to find an effective supplement to reduce methane emissions.

View Article and Find Full Text PDF

Microbial assisted alleviation of nickel toxicity in plants: A review.

Ecotoxicol Environ Saf

January 2025

Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden. Electronic address:

Nickel (Ni) is required in trace amounts (less than 500 µg kg) in plants to regulate metabolic processes, the immune system, and to act as an enzymatic catalytic cofactor. Conversely, when nickel is present in high concentration, it is considered as a toxic substance. Excessive human nickel exposure occurs through ingestion, inhalation, and skin contact, ultimately leading to respiratory, cardiovascular, and chronic kidney diseases.

View Article and Find Full Text PDF

Use of magnetite nanoparticles and magnetic separation for the removal of metal(loid)s from contaminated mine soils.

J Hazard Mater

January 2025

Departamento de Química Orgánica y Bio-Orgánica, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta s/n, Las Rozas de Madrid 28232, Spain. Electronic address:

Magnetite nanoparticles have been successfully used for removal and immobilization of contaminants in water, yet their application in soils combined with in situ magnetic separation remains unexplored. We evaluated the effectiveness and optimal conditions for using magnetite nanoparticles combined with magnetic separation to remove metal(loid)s from contaminated mine soils. Soil samples were incubated (15, 45 days) with varying doses of magnetite (0, 25, 50 g kg⁻¹) and moisture (dry, field capacity) and separated using electromagnet or permanent magnet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!