Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease, affecting over one million individuals in Europe. Hypertrophic cardiomyopathy patients often require pharmacological intervention for control of symptoms, dynamic left ventricular outflow obstruction, supraventricular and ventricular arrhythmias, and microvascular ischaemia. Current treatment strategies in HCM are predicated on the empirical use of long-standing drugs, such as beta-adrenergic and calcium blockers, although with little evidence supporting their clinical benefit in this disease. In the six decades since the original description of the disease, <50 pharmacological studies enrolling little over 2000 HCM patients have been performed, the majority of which were small, non-randomized cohorts. As our understanding of the genetic basis and pathophysiology of HCM improves, the availability of transgenic and preclinical models uncovers clues to novel and promising treatment modalities. Furthermore, the number of patients identified and followed at international referral centres has grown steadily over the decades. As a result, the opportunity now exists to implement adequately designed pharmacological trials in HCM, using established as well as novel drug therapies, to potentially intervene on the complex pathophysiology of the disease and alter its natural course. Therefore, it is timely to review the available evidence for pharmacological therapy of HCM patients, highlight the most relevant gaps in knowledge, and address some of the most promising areas for future pharmacological research, in an effort to move HCM into the era of evidence-based management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/eurheartj/ehs150 | DOI Listing |
R I Med J (2013)
February 2025
Brown University Health Cardiovascular Institute; Rhode Island, the Miriam and Newport Hospitals; Warren Alpert Medical School, Brown University.
Cardiac magnetic resonance imaging (CMR) is an exciting noninvasive imaging modality with increasing utilization in the field of cardiovascular medicine. In conjunction with echocardiogram, computed tomography, and invasive therapies, CMR has provided exceptional capability to further evaluate complex clinical cardiac conditions. CMR provides both anatomical and physiological information of a variety of tissue types, without the need for ionizing radiation.
View Article and Find Full Text PDFCirc Cardiovasc Imaging
January 2025
Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Milan, Italy (L.T., G.D., M.L., A.C.).
Echocardiography
February 2025
Department of Cardiology, Loyola University Medical Center, Maywood, Illinois, USA.
The left atrium (LA) is pivotal in cardiac hemodynamics, serving as a dynamic indicator of left ventricular (LV) compliance and diastolic function. The LA undergoes structural and functional adaptations in response to hemodynamic stress, infiltrative processes, myocardial injury, and arrhythmic triggers. Remodeling of the LA in response to these stressors directly impacts pulmonary circulation, eventually leading to pulmonary capillary involvement, pulmonary artery hypertension, and eventually right ventricular failure.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
January 2025
Heart Institute. Department of Cardiology. Cardiovascular Imaging Unit. Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.
Aims: How the underlying etiology and pathophysiology of left ventricular (LV) hypertrophy affects LA remodeling and function remains unexplored. The present study aims to investigate the influence of various hypertrophic phenotypes on LA remodeling and function.
Methods And Results: Patients with LV hypertrophy who underwent cardiac magnetic resonance (CMR) were compared to a control group.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!