Motivation: It has been recognized that the topology of molecular networks provides information about the certainty and nature of individual interactions. Thus, network motifs have been used for predicting missing links in biological networks and for removing false positives. However, various different measures can be inferred from the structure of a given network and their predictive power varies depending on the task at hand.

Results: Herein, we present a systematic assessment of seven different network features extracted from the topology of functional genetic networks and we quantify their ability to classify interactions into different types of physical protein associations. Using machine learning, we combine features based on network topology with non-network features and compare their importance of the classification of interactions. We demonstrate the utility of network features based on human and budding yeast networks; we show that network features can distinguish different sub-types of physical protein associations and we apply the framework to fission yeast, which has a much sparser known physical interactome than the other two species. Our analysis shows that network features are at least as predictive for the tasks we tested as non-network features. However, feature importance varies between species owing to different topological characteristics of the networks. The application to fission yeast shows that small maps of physical interactomes can be extended based on functional networks, which are often more readily available.

Availability And Implementation: The R-code for computing the network features is available from www.cellularnetworks.org

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bts351DOI Listing

Publication Analysis

Top Keywords

network features
20
topology functional
8
functional networks
8
network
8
features
8
physical protein
8
protein associations
8
features based
8
non-network features
8
fission yeast
8

Similar Publications

Delineating CYP2C19-Mediated Interactions: Network Pharmacology Investigation of Ilaprazole and Clopidogrel versus Conventional Proton Pump Inhibitors.

Curr Drug Discov Technol

December 2024

Department of Pharmacy Practice, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamilnadu, 603203, India.

Background: Clopidogrel, an antiplatelet drug commonly used in cardiovascular disease, is metabolized by the liver mainly through CYP2C19. Concomitant use of Proton pump inhibitors along with clopidogrel may affect the potency of clopidogrel by CYP2C19 inhibition. However, a novel PPI, ilaprazole is known to differ in its pharmacokinetic features, given the potential differences between ilaprazole's interactions and their metabolism with clopidogrel.

View Article and Find Full Text PDF

Objective: Whereas a scalp electroencephalogram (EEG) is important for diagnosing epilepsy, a single routine EEG is limited in its diagnostic value. Only a small percentage of routine EEGs show interictal epileptiform discharges (IEDs) and overall misdiagnosis rates of epilepsy are 20% to 30%. We aim to demonstrate how network properties in EEG recordings can be used to improve the speed and accuracy differentiating epilepsy from mimics, such as functional seizures - even in the absence of IEDs.

View Article and Find Full Text PDF

Background: Gallbladder neuroendocrine carcinoma (NEC) represents a subtype of gallbladder malignancies characterized by a low incidence, aggressive nature, and poor prognosis. Despite its clinical severity, the genetic alterations, mechanisms, and signaling pathways underlying gallbladder NEC remain unclear.

Case Summary: This case study presents a rare instance of primary gallbladder NEC in a 73-year-old female patient, who underwent a radical cholecystectomy with hepatic hilar lymphadenectomy and resection of liver segments IV-B and V.

View Article and Find Full Text PDF

Background: Microvascular invasion (MVI) is a significant risk factor for recurrence and metastasis following hepatocellular carcinoma (HCC) surgery. Currently, there is a paucity of preoperative evaluation approaches for MVI.

Aim: To investigate the predictive value of texture features and radiological signs based on multiparametric magnetic resonance imaging in the non-invasive preoperative prediction of MVI in HCC.

View Article and Find Full Text PDF

Introduction: Autism Spectrum Disorder (ASD) is characterized by deficits in social cognition, self-referential processing, and restricted repetitive behaviors. Despite the established clinical symptoms and neurofunctional alterations in ASD, definitive biomarkers for ASD features during neurodevelopment remain unknown. In this study, we aimed to explore if activation in brain regions of the default mode network (DMN), specifically the medial prefrontal cortex (MPC), posterior cingulate cortex (PCC), superior temporal sulcus (STS), inferior frontal gyrus (IFG), angular gyrus (AG), and the temporoparietal junction (TPJ), during resting-state functional magnetic resonance imaging (rs-fMRI) is associated with possible phenotypic features of autism (PPFA) in a large, diverse youth cohort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!