Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1664405 | PMC |
http://dx.doi.org/10.1136/bmj.301.6763.1280-a | DOI Listing |
J Xenobiot
December 2024
Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
Skin represents an effective barrier against the penetration of external agents into the human body. Nevertheless, recent research has shown that small particles, especially in the nanosized range, can not only penetrate through the skin but also work as vectors to transport active molecules such as contrast agents or drugs. This knowledge has opened new perspectives on nanomedicine and controlled drug delivery.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, China.
High intrinsic detection efficiency is as decisive as high energy resolution. Scaling up detector volume has presented great challenges, preventing perovskite semiconductors from reaching sufficient detection efficiency. We report a hole-only virtual-Frisch-grid CsPbBr detector up to 2.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, Beijing, China.
Unlabelled: Acetate/acetyl-CoA interconversion is an interesting metabolic node, primarily catalyzed by a set of various enzymes in prokaryotes. is a promising haloarchaeaon, capable of utilizing acetate as a sole carbon source for biosynthesis of high value-added products. Here, we have reported the key enzymes that catalyzed acetate activation in .
View Article and Find Full Text PDFAcc Chem Res
December 2024
Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, California 92697, United States of America.
Sci Rep
November 2024
School of Mathematical Sciences, Shanxi University, Taiyuan, 030006, People's Republic of China.
In the current study, we present a stochastic SAIS (unaware susceptible-aware susceptible-infectious-unaware susceptible) epidemic dynamic model on complex networks with multi-weights. The disease dynamic is influenced by random perturbations to the force of the infection rates, as well as awareness rates. To analyze the problem of extinction, we discuss both the stochastic asymptotic stability in the large and almost surely exponential stability of the trivial solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!