Top-down mass spectrometry for the analysis of combinatorial post-translational modifications.

Mass Spectrom Rev

Michael Barber Centre for Mass Spectrometry, School of Chemistry, University of Manchester, Manchester Interdisciplinary Biocentre, Manchester M1 7DN, UK.

Published: May 2013

Protein post-translational modifications (PTMs) are critically important in regulating both protein structure and function, often in a rapid and reversible manner. Due to its sensitivity and vast applicability, mass spectrometry (MS) has become the technique of choice for analyzing PTMs. Whilst the "bottom-up' analytical approach, in which proteins are proteolyzed generating peptides for analysis by MS, is routinely applied and offers some advantages in terms of ease of analysis and lower limit of detection, "top-down" MS, describing the analysis of intact proteins, yields unique and highly valuable information on the connectivity and therefore combinatorial effect of multiple PTMs in the same polypeptide chain. In this review, the state of the art in top-down MS will be discussed, covering the main instrumental platforms and ion activation techniques. Moreover, the way that this approach can be used to gain insights on the combinatorial effect of multiple post-translational modifications and how this information can assist in studying physiologically relevant systems at the molecular level will also be addressed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mas.21348DOI Listing

Publication Analysis

Top Keywords

post-translational modifications
12
mass spectrometry
8
combinatorial multiple
8
top-down mass
4
analysis
4
spectrometry analysis
4
analysis combinatorial
4
combinatorial post-translational
4
modifications protein
4
protein post-translational
4

Similar Publications

In recent years, it was found that lysine malonylation modification can affect biological metabolism and play an important role in plant life activities. Platycodon grandiflorus, an economic crop and medicinal plant, had no reports on malonylation in the related literature. This study qualitatively introduces lysine malonylation in P.

View Article and Find Full Text PDF

The accumulation of defective polypeptides in cells is a major cause of various diseases. However, probing defective proteins is difficult because no currently available method can retrieve unstable defective translational products in a soluble state. To overcome this issue, there is a need for a molecular device specific to structurally defective polypeptides.

View Article and Find Full Text PDF

The correct synthesis and degradation of proteins are vital for numerous biological processes in the human body, with protein degradation primarily facilitated by the ubiquitin-proteasome system. The SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase, a member of the Cullin-RING E3 ubiquitin ligase (CRL) family, plays a crucial role in mediating protein ubiquitination and subsequent 26S proteasome degradation during normal cellular metabolism. Notably, SCF is intricately linked to the pathogenesis of various diseases, including malignant tumors.

View Article and Find Full Text PDF

Navigating the landscape of plant proteomics.

J Integr Plant Biol

January 2025

Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.

In plants, proteins are fundamental to virtually all biological processes, such as photosynthesis, signal transduction, metabolic regulation, and stress responses. Studying protein distribution, function, modifications, and interactions at the cellular and tissue levels is critical for unraveling the complexities of these biological pathways. Protein abundance and localization are highly dynamic and vary widely across the proteome, presenting a challenge for global protein quantification and analysis.

View Article and Find Full Text PDF

High interstitial fluid pressure enhances USP1-dependent KIF11 protein stability to promote hepatocellular carcinoma progression.

J Transl Med

January 2025

Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Nanchang, 330006, Jiangxi, China.

Background: HCC is characterized by a high interstitial fluid pressure (HIFP) environment, which appears to support cancer cell survival. However, the mechanisms behind this phenomenon are not fully understood.

Methods: This study investigates the role of kinesin family member 11 (KIF11) in HCC under HIFP conditions, using both in vivo and in vitro models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!