High blood glucose results in high glucose levels in retina, because GLUT1, the sole glucose transporter between blood and retina, transports more glucose when blood glucose is high. This is the ultimate cause of diabetic retinopathy. Knockdown of GLUT1 by intraocular injections of a pool of siRNAs directed against SLC2A1 mRNA which codes for GLUT1 significantly reduced mean retinal glucose levels in diabetic mice. Systemic treatment of diabetic mice with forskolin or genistein, which bind GLUT1 and inhibit glucose transport, significantly reduced retinal glucose to the same levels seen in non-diabetics. 1,9-Dideoxyforskolin, which binds GLUT1 but does not stimulate adenylate cyclase had an equivalent effect to that of forskolin regarding lowering retinal glucose in diabetics indicating that cyclic AMP is noncontributory. GLUT1 inhibitors also reduced glucose and glycohemoglobin levels in red blood cells providing a peripheral biomarker for the effect. In contrast, brain glucose levels were not increased in diabetics and not reduced by forskolin. Treatment of diabetics with forskolin prevented early biomarkers of diabetic retinopathy, including elevation of superoxide radicals, increased expression of the chaperone protein β2 crystallin, and increased expression of vascular endothelial growth factor (VEGF). These data identify GLUT1 as a promising therapeutic target for prevention of diabetic retinopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.24133 | DOI Listing |
J Transl Med
January 2025
Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.
View Article and Find Full Text PDFChin Med
January 2025
Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.
Methods: HFD-induced obese mice were treated with WMW.
Microb Cell Fact
January 2025
Molecular Biology Department, Biotechnology Research Institute, National Research Center, El-Buhouth St. 33, Dokki, P.O.12622, Giza, Egypt.
Background: Actinomycetes are a well-known example of a microbiological origin that may generate a wide variety of chemical structures. As excellent cell factories, these sources are able to manufacture medicines, agrochemicals, and enzymes that are crucial.
Results: In this study, about 34 randomly selected Streptomyces isolates were discovered in soil, sediment, sea water, and other environments.
BMC Neurol
January 2025
Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, China.
Background: Awareness of the characteristics of glial fibrillary acidic protein autoantibody (GFAP-IgG) associated myelitis facilitates early diagnosis and treatment. We explored features in GFAP-IgG myelitis and compared them with those in myelitis associated with aquaporin-4 IgG (AQP4-IgG) and myelin oligodendrocyte glycoprotein IgG (MOG-IgG).
Methods: We retrospectively reviewed data from patients with GFAP-IgG myelitis at the First Affiliated Hospital of Zhengzhou University and Henan Children's Hospital from May 2018 to May 2023.
BMC Public Health
January 2025
School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
Background: Family income to poverty ratio (PIR) may have independent effects on diet and lifestyle factors and the development of prediabetes and diabetes, as well as on mortality. It is unclear how the protective effect of a healthy lifestyle against death differs between individuals with different glucose metabolic profiles and whether PIR mediates this effect. This study aimed to explore whether healthy lifestyle and family PIR reduced the risk of all-cause mortality in participants with different metabolic status and the mediating role of PIR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!