The ability of histone deacetylase inhibitors to modulate the expression of genes relevant for growth or apoptotis regulation supports their interest in combination treatments of resistant tumors. We explored the effect of the combination of the histone deacetylase inhibitor ST2782 and the proteasome inhibitor bortezomib in ovarian carcinoma cell lines, including the IGROV-1 cell line and two p53 mutant platinum-resistant sublines (IGROV-1/OHP and IGROV-1/Pt1). We found a synergistic interaction between the two drugs, more evident in the p53-mutant resistant sublines, which was associated with increa sed apoptosis. The treatment with ST2782 resulted in early induction of Bax as well as in cleavage of caspase 3 and poly (ADP-ribose) polymerase only in the resistant cell lines. The inhibition of p53-transcriptional transactivation by pifithrin alpha in IGROV-1 cells enhanced the synergism. Conversely, knockdown of endogenous wild-type p53 in IGROV-1 cells determined synergism reduction. These opposite effects support the relevance of the transactivation-deficient mutant p53 as a synergism determinant. Moreover, in vivo studies indicated that tumor growth inhibition tended to be more evident in mice receiving the drug combination than in those treated with bortezomib alone. Overall, our study supports the potential effectiveness of the combination in platinum drug-resistant ovarian cancer carrying mutant p53.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2012.04.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!