Introduction: Effective treatment of reactive arthritis would ideally achieve both control of inflammation and eradication of persisting arthritogenic pathogens. We use a model of experimental Chlamydia trachomatis-induced arthritis (CtIA) to evaluate the effectiveness of nafamostat mesilate (NM), a serine protease inhibitor with complement-modifying effects and anticoagulant properties. To date clinical use of NM has largely been in Asia and has been primarily confined to inflammatory states such as pancreatitis.
Methods: In vitro studies examined inhibition of Chlamydia proliferation using fibroblast cell lines as targets and phase contrast microscopy. In vivo studies used an established protocol, experimental CtIA, induced in Lewis rats by injection of synoviocyte-packaged C. trachomatis. NM was dissolved in water and administered by daily intraperitoneal injection at a dose of 10 mg/kg beginning the day prior to the administration of Chlamydia. Readouts in vivo included (i) joint swelling, (ii) histopathology scoring of severity of arthritis, (iii) host clearance of the pathogen (by ELISA, the IDEIA PCE Chlamydia).
Results: NM exerted a dose-dependent inhibition of chlamydial proliferation in vitro. Without NM, the mean number of inclusion bodies (IB) per well was 17,886 (± 1415). At 5 μg/mL NM, there were 8,490 (± 756) IB, at 25 μg/mL NM there were 35 IB and at 50 μg/mL NM no IB was observed. Chlamydial antigens in each well along the concentration gradient were assayed by ELISA, demonstrating that at 25 μg/mL NM inhibition of Chlamydia was almost complete. In the experimental arthritis model, joint swelling was significantly reduced with NM treatment: average joint width for the NM-treated animals was 8.55 mm (s.d. ± 0.6578, n = 10) versus 11.18 mm (s.d. ± 0.5672, n = 10) in controls (P < 0.001). Histopathology scoring indicated that NM resulted in a marked attenuation of the inflammatory infiltration and joint damage: mean pathology score in NM-treated animals was 10.9 (± 2.45, n = 11) versus 15.9 (± 1.45, n = 10) in controls (P < 0.0001). With respect to persistence of Chlamydia within the synovial tissues, NM treatment was accompanied by a reduction in the microbial load in the joint: mean optical density (O.D.) for ELISA with NM treatment was 0.05 (± 0.02, n = 4) versus 0.18 (± 0.05, n = 4) in controls (P < 0.001).
Conclusions: NM is a protease inhibitor not previously recognized to possess antimicrobial properties. The present study demonstrates for the first time that NM exerts significant impact on C. trachomatis-induced arthritis and suggests that such approaches may prove clinically useful in chronic reactive arthritis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3446536 | PMC |
http://dx.doi.org/10.1186/ar3886 | DOI Listing |
J Antimicrob Chemother
January 2025
Research Laboratory, Botswana Harvard Health Partnership, Gaborone, Botswana.
Objectives: We assessed HIV-1 drug resistance profiles among people living with HIV (PLWH) with detectable viral load (VL) and on dolutegravir-based antiretroviral therapy (ART) in Botswana.
Methods: The study utilised available 100 residual HIV-1 VL samples from unique PLWH in Francistown who had viraemia at-least 6 months after initiating ART in Botswana's national ART program from November 2023 to January 2024. Viraemia was categorized as low-level viraemia (LLV) (VL: 200-999 copies/mL) or virologic failure (VF) (VL ≥1000 copies/mL).
HIV Res Clin Pract
December 2025
National Heart and Lung Institute, Imperial College London, London, UK.
Introduction: The BIC-T&T study aimed to determine the efficacy of bictegraviremtricitabine/tenofovir alafenamide (BIC/F/TAF) and darunavir/cobicistat/emtricitabinetenofovir alafenamide (DRV/c/F/TAF) at suppressing viral load in a two-arm, open-label, multi-centre, randomised trial under a UK test-and-treat setting. This sub-study aimed to evaluate potential off-target cardiovascular impact by examining platelet function.
Methods: Platelets were isolated by centrifugation of citrated blood from participants attending Chelsea and Westminster Hospital or St Mary's Hospital at Week 48 following enrolment.
Trials
January 2025
Department of Neurology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
Background: Early neurological deterioration (END) is a critical determinant influencing the short-term prognosis of acute ischemic stroke (AIS) patients and is associated with increased mortality rates among hospitalized individuals. AIS frequently coexists with coronary heart disease (CHD), complicating treatment and leading to more severe symptoms and worse outcomes. Shared risk factors between CHD and AIS, especially elevated low-density lipoprotein cholesterol (LDL-C), contribute to atherosclerosis and inflammation, which worsen brain tissue damage.
View Article and Find Full Text PDFMol Syst Biol
January 2025
Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
With current treatments addressing only a fraction of pathogens and new viral threats constantly evolving, there is a critical need to expand our existing therapeutic arsenal. To speed the rate of discovery and better prepare against future threats, we establish a high-throughput platform capable of screening compounds against 40 diverse viral proteases simultaneously. This multiplex approach is enabled by using cellular biosensors of viral protease activity combined with DNA-barcoding technology, as well as several design innovations that increase assay sensitivity and correct for plate-to-plate variation.
View Article and Find Full Text PDFInt J Pharm
January 2025
College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA. Electronic address:
Intranasal drug administration offers a promising strategy for delivering combination antiretroviral therapy (cART) directly to the central nervous system to treat NeuroAIDS, leveraging the nose-to-brain route to bypass the blood-brain barrier. However, challenges such as enzymatic degradation in the nasal mucosa, low permeability, and mucociliary clearance within the nasal cavity must first be addressed to make this route feasible. To overcome these barriers, this study developed solid lipid nanoparticles (SLNs) with varying PEGylation levels (0 %, 5 %, 10 %, and 15 % w/w of PEGylated lipid), co-encapsulated with Elvitegravir (EVG) and Atazanavir (ATZ) as an integrase and protease inhibitor, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!