57Fe, 33S, and 14N electron nuclear double resonance (ENDOR) studies have been performed to characterize the [4Fe-4S]+ cluster at the active site of aconitase. Q-band 57Fe ENDOLR of isotopically enriched enzyme, both substrate free and in the enzyme-substrate complex, reveals four inequivalent iron sites. In agreement with Mössbauer studies [Kent et al. (1985) J. Biol. Chem. 260, 6371-6881], one of the iron ions, Fea, which is easily removed by oxidation to yield the [3Fe-4S]+ cluster of inactive aconitase, shows a dramatic change in the presence of substrate. The remaining iron sites, Feb1,2,3, show minor changes when substrate is bound. Methods devised by us for analyzing and simulating ENDOR spectra of a randomly oriented paramagnet have been used to determine the principal values and orientation relative to the g tensor for the hyperfine tensors of three of the four inequivalent iron sites of the [4Fe-4S]+ cluster, Fea, Feb2, and Feb3, in the substrate-free enzyme and the enzyme-substrate complex. The full tensor for the fourth site, Feb1, could not be obtained because its signal is seen only over a limited range of the EPR envelope. 33S ENDOR data for the enzyme-substrate complex using enzyme reconstituted with 33S show that the four inorganic bridging sulfide ions of the [4Fe-4S]+ cube have isotropic hyperfine couplings of A(S) less than 12 MHz, and analysis indicates that they can be divided into two pairs, one with couplings of A(S1) approximately less than 1 MHz and the other with A(S2) approximately 6-12 MHz; the analysis further places these pairs within the cube relative to the iron sites. 33S data for substrate-free enzyme is qualitatively similar and can be completely simulated by two types of S2- ion, with A(S1) approximately 7.5 and A(S2) approximately 9 MHz; the full hyperfine tensors have been determined. The hyperfine values for the two enzyme forms correspond to surprisingly small unpaired spin density on S2-. 14N ENDOR at Q-band reveals a nitrogen signal that does not change upon substrate binding.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00498a016DOI Listing

Publication Analysis

Top Keywords

iron sites
16
[4fe-4s]+ cluster
12
enzyme-substrate complex
12
cluster active
8
active site
8
site aconitase
8
57fe 33s
8
33s 14n
8
14n electron
8
electron nuclear
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!