Background: Asymptomatic variant haemoglobin is increasingly being found in the measurement of glycated haemoglobin (HbA(1c)) for the management of diabetes mellitus. We compared the HbA(1c) concentrations measured by high-performance liquid chromatography (HPLC) and immunoassay and glycated albumin (GA) concentrations and calculated the respective ratios in order to classify the variant haemoglobin.

Methods: Twenty different haemoglobin variants from 43 subjects were identified by mass spectrometry and DNA analysis. Since GA accurately reflects glycaemic control in patients with variant haemoglobin, we calculated respective ratios of HbA(1c) and GA. Haemoglobin variants causing a low ratio of HbA(1c) measured by HPLC (HPLC-HbA(1c)) to GA with a normal ratio of HbA(1c) measured by immunoassay (IA-HbA(1c)) to GA were classified as C1. A further classification of α and β was used with abnormalities of the α chain or β chain in the haemoglobin gene. Other haemoglobin variants were classified as non-C1. Eight diabetic patients with stable glycaemic control were used as controls.

Results: Twenty forms of variant haemoglobins were classified as C1α (2 variants; I-Interlaken and Hb J-Meerut), C1β (15 variants) and non-C1 (3 variants; Hb Himeji, Hb Woolwich, Hb Peterborough). Positive correlations between GA and HPLC-HbA(1c) or IA-HbA(1c) were seen in the C1β patients with diabetes mellitus. The regression line between GA and HPLC-HbA(1c), but not that between GA and IA-HbA(1c), showed a downward shift in comparison with the data obtained from the diabetic controls.

Conclusions: Variant haemoglobin could be classified by calculating the ratios of HPLC-HbA(1c), IA-HbA(1c) and GA.

Download full-text PDF

Source
http://dx.doi.org/10.1258/acb.2012.011192DOI Listing

Publication Analysis

Top Keywords

variant haemoglobin
12
haemoglobin variants
12
hplc-hba1c ia-hba1c
12
haemoglobin
10
glycated haemoglobin
8
glycated albumin
8
diabetes mellitus
8
calculated respective
8
respective ratios
8
glycaemic control
8

Similar Publications

Purpose: To develop an algorithm using routine clinical laboratory measurements to identify people at risk for systematic underestimation of glycated hemoglobin (HbA1c) due to p.Val68Met glucose-6-phosphate dehydrogenase (G6PD) deficiency.

Methods: We analyzed 122,307 participants of self-identified Black race across four large cohorts with blood glucose, HbA1c, and red cell distribution width measurements from a single blood draw.

View Article and Find Full Text PDF

Hemoglobin is an oxygen-transport protein in red blood cells that interacts with multiple ligands, e.g., oxygen, carbon dioxide, carbon monoxide, and nitric oxide.

View Article and Find Full Text PDF

Non-invasive prenatal testing (NIPT) has been widely adopted for the screening of chromosomal abnormalities; however, its adoption for monogenic disorders, such as β-thalassaemia, has proven challenging. Haemoglobinopathies are the most common monogenic disorders globally, with β-thalassaemia being particularly prevalent in Cyprus. This study introduces a non-invasive prenatal haplotyping (NIPH) assay for β-thalassaemia, utilizing cell-free DNA (cfDNA) from maternal plasma.

View Article and Find Full Text PDF

Unlabelled: Thalassemias and hemoglobinopathies are among the most common genetic diseases worldwide and have a significant impact on public health. The decreasing cost of next-generation sequencing (NGS) has quickly enabled the development of new assays that allow for the simultaneous analysis of small nucleotide variants (SNVs) and copy number variants (CNVs) as deletions/duplications of α- and β-globin genes.

Background/objectives: This study highlighted the efficacy and rapid identification of all types of mutations in the α- and β-globin genes, including silent variants, using the Devyser Thalassemia NGS kit.

View Article and Find Full Text PDF

We present a patient with type 2 diabetes mellitus and a variant hemoglobin whose HbA1c levels were falsely elevated regardless of the measurement method [high-performance liquid chromatography (HPLC), enzymatic, and immuno-assay] used. The causes of the falsely high HbA1c levels in this patient were investigated. The patient was a 73-year-old man with frequent hypoglycemia on self-monitoring of blood glucose, whose HbA1c level when measured by HPLC (standard mode) and immunoassay was substantially higher than that predicted by continuous blood glucose monitoring or from the patient's glycated albumin level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!