Deficiency of ganglioside GM1 correlates with Parkinson's disease in mice and humans.

J Neurosci Res

Department of Neurology and Neurosciences, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA.

Published: October 2012

Several studies have successfully employed GM1 ganglioside to treat animal models of Parkinson's disease (PD), suggesting involvement of this ganglioside in PD etiology. We recently demonstrated that genetically engineered mice (B4galnt1(-/-) ) devoid of GM1 acquire characteristic symptoms of this disorder, including motor impairment, depletion of striatal dopamine, selective loss of tyrosine hydroxylase-expressing neurons, and aggregation of α-synuclein. The present study demonstrates similar symptoms in heterozygous mice (HTs) that express only partial GM1 deficiency. Symptoms were alleviated by administration of L-dopa or LIGA-20, a membrane-permeable analog of GM1 that penetrates the blood-brain barrier and accesses intracellular compartments. Immunohistochemical analysis of paraffin sections from PD patients revealed significant GM1 deficiency in nigral dopaminergic neurons compared with age-matched controls. This was comparable to the GM1 deficiency of HT mice and suggests that GM1 deficiency may be a contributing factor to idiopathic PD. We propose that HT mice with partial GM1 deficiency constitute an especially useful model for PD, reflecting the actual pathophysiology of this disorder. The results point to membrane-permeable analogs of GM1 as holding promise as a form of GM1 replacement therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.23090DOI Listing

Publication Analysis

Top Keywords

gm1 deficiency
20
gm1
11
parkinson's disease
8
partial gm1
8
deficiency
6
mice
5
deficiency ganglioside
4
ganglioside gm1
4
gm1 correlates
4
correlates parkinson's
4

Similar Publications

Alginate oligosaccharides (AOS) have gained attention for their capacity to regulate human health as prebiotics. Osteosarcopenia is a progressive disease of the musculoskeletal system and result in heavy burden of patients. Studies suggest that gut microbiota is involved in the pathogenesis of osteosarcopenia, whether AOS can improve the symptoms of osteosarcopenia by modulating gut microbiota remains to be elucidated.

View Article and Find Full Text PDF

Background: Breeding programs for nutrient-efficient tea plant varieties could be advanced by the combination of genotyping and phenotyping technologies. This study was aimed to search functional SNPs in key genes related to the nitrogen-assimilation in the collection of tea plant (L.) Kuntze.

View Article and Find Full Text PDF

Rett syndrome (RTT) is a severe neurodevelopmental disorder primarily caused by mutations in the methyl-CpG binding protein 2 () gene. Despite advancements in research, no cure exists due to an incomplete understanding of the molecular effects of MeCP2 deficiency. Previous studies have identified impaired tropomyosin receptor kinase (Trk) neurotrophin (NTP) signaling and mitochondrial redox imbalances as key drivers of the pathology.

View Article and Find Full Text PDF
Article Synopsis
  • * Disrupting lipid rafts, which are involved in the bacteria's entry into cells, can reduce S. aureus internalization, offering a potential strategy to improve treatment effectiveness.
  • * The study identified alpha-hemolysin (Hla) as a key factor needed for the bacteria to enter lung cells, with caveolin-1 playing a critical role as a receptor for this process, underscoring the significance of lipid rafts in bacterial invasion.
View Article and Find Full Text PDF

Generation of an infantile GM1 gangliosidosis induced pluripotent stem cell line (CHOCi005-A) for disease modeling and therapeutic testing.

Stem Cell Res

December 2024

Division of Metabolic Disorders, Children's Hospital of Orange County Specialists, Orange, CA 92868, United States; Department of Pediatrics, University of California-Irvine School of Medicine, Irvine, CA 92697, United States. Electronic address:

Article Synopsis
  • - GM1 gangliosidosis is a rare genetic disorder caused by a deficiency of the enzyme beta-galactosidase, leading to harmful buildup of GM1 ganglioside in the body.
  • - There are limited resources for studying GM1, and obtaining human cell lines for research is challenging, but generating induced pluripotent stem cells (iPSCs) from skin cells of GM1 patients can help with modeling the disease.
  • - The newly developed iPSC lines will be important for testing potential therapies and advancing research in gene therapy for GM1 gangliosidosis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!