Background: Blood leukocytes from patients with solid tumors exhibit complex and distinct cancer-associated patterns of DNA methylation. However, the biologic mechanisms underlying these patterns remain poorly understood. Because epigenetic biomarkers offer significant clinical potential for cancer detection, we sought to address a mechanistic gap in recently published works, hypothesizing that blood-based epigenetic variation may be due to shifts in leukocyte populations.
Methods: We identified differentially methylated regions (DMR) among leukocyte subtypes using epigenome-wide DNA methylation profiling of purified peripheral blood leukocyte subtypes from healthy donors. These leukocyte-tagging DMRs were then evaluated using epigenome-wide blood methylation data from three independent case-control studies of different cancers.
Results: A substantial proportion of the top 50 leukocyte DMRs were significantly differentially methylated among head and neck squamous cell carcinoma (HNSCC) cases and ovarian cancer cases compared with cancer-free controls (48 and 47 of 50, respectively). Methylation classes derived from leukocyte DMRs were significantly associated cancer case status (P < 0.001, P < 0.03, and P < 0.001) for all three cancer types: HNSCC, bladder cancer, and ovarian cancer, respectively and predicted cancer status with a high degree of accuracy (area under the curve [AUC] = 0.82, 0.83, and 0.67).
Conclusions: These results suggest that shifts in leukocyte subpopulations may account for a considerable proportion of variability in peripheral blood DNA methylation patterns of solid tumors.
Impact: This illustrates the potential use of DNA methylation profiles for identifying shifts in leukocyte populations representative of disease, and that such profiles may represent powerful new diagnostic tools, applicable to a range of solid tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3415587 | PMC |
http://dx.doi.org/10.1158/1055-9965.EPI-12-0361 | DOI Listing |
Funct Integr Genomics
January 2025
School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China.
Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.
View Article and Find Full Text PDFGeroscience
January 2025
Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
Rheumatoid arthritis (RA) is an age-related chronic inflammatory disease which may include accelerated biological ageing processes in its pathogenesis. To determine if increased biological age is associated with risk of RA and/or is present once disease is established. We used DNA methylation to compare biological age (epigenetic age) of immune cells in adults at risk of RA and those with confirmed RA, including twins discordant for RA.
View Article and Find Full Text PDFNutrients
December 2024
2nd Department of Gynecology and Obstetrics, University Hospital Bratislava and Comenius University, 821 01 Bratislava, Slovakia.
Neural tube defects (NTDs) are malformations of the central nervous system that represent the second most common cause of congenital morbidity and mortality, following cardiovascular abnormalities. Maternal nutrition, particularly folic acid, a B vitamin, is crucial in the etiology of NTDs. FA plays a key role in DNA methylation, synthesis, and repair, acting as a cofactor in one-carbon transfer reactions essential for neural tube development.
View Article and Find Full Text PDFNutrients
December 2024
Department of Nutrition, Texas A&M University, College Station, TX 77843, USA.
Background/objectives: This study builds on previous findings from mouse models, which showed that maternal overnutrition induced by a high-fat diet (HFD) promotes metabolic-associated fatty liver disease (MAFLD) in offspring, linked to global DNA hypermethylation. We explored whether epigenetic modulation with 5-Aza-CdR, a DNA methylation inhibitor, could prevent MAFLD in offspring exposed to maternal overnutrition.
Methods: The offspring mice from dams of maternal overnutrition were fed either a chow diet or a high-fat diet (HFD) for 10 weeks.
Nutrients
December 2024
Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
Background And Objectives: Depression often results in premature aging, which increases the risk of other chronic diseases, but very few studies have analyzed the association between epigenetic biomarkers of aging and depressive symptoms. Similarly, limited research has examined the joint effects of adherence to the Mediterranean diet (MedDiet) and chronotype on depressive symptoms, accounting for sex differences. Therefore, these are the objectives of our investigation in a Mediterranean population at high cardiovascular risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!