We demonstrate for the first time that the Hartmann wavefront sensor (HWS) principle can be applied for characterizing the wavefronts of terahertz (THz) electromagnetic radiation. The THz Hartmann wavefront sensor consists of a metallic plate with an array of holes and a two-dimensional scanable pyro-electric detector. The THz radiation with different wavefronts was generated by a far-infrared gas laser operated at 2.5 THz in combination with a number of objects that result in known wavefronts. To measure the wavefront, a beam passing through an array of holes generates intensity spots, for which the positions of the individual spot centroids are measured and compared with reference positions. The reconstructed wavefronts are in good agreement with the model expectations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.014380 | DOI Listing |
Comput Biol Med
January 2025
Centre of Physics of the Universities of Minho and Porto, University of Minho, 4710-057, Braga, Portugal. Electronic address:
The purpose of this study was to use wavefront sensing as an objective method to detect and assess dynamic accommodation in subjects with accommodative dysfunctions and symptoms related to near-vision tasks. Sixty-three subjects were divided into control (N = 18), symptomatic without any accommodative dysfunction (SWD) (N = 18), infacility of accommodation (INFA) (N = 6), excess of accommodation (EA) (N = 9), and insufficiency of accommodation (INSA) (N = 12) groups. Accommodation was stimulated in different cycles of accommodation and disaccommodation while ocular aberrations were measured.
View Article and Find Full Text PDFQuantum backflow (QB), a counterintuitive interference phenomenon where particles with positive momentum can propagate backward, is important in applications involving light-matter interactions. To date, experimental demonstrations of backflow have been restricted to classical optical systems using techniques such as slit scanning or Shack-Hartmann wavefront sensing, which suffer from low spatial resolution due to the inherent limitations in slit width and lenslet array density. Here, we report an observation of azimuthal backflow (AB) both theoretically and experimentally by employing the weak measurement technique, which enables the precise extraction of photon momentum at each pixel.
View Article and Find Full Text PDFThe Shack-Hartmann wavefront sensor (SHWS) is known for its high accuracy and robust wavefront sensing capabilities. However, conventional compact SHWS confronts limitations in measuring field-of-view to meet emerging applications' increasing demands. Here, we propose a high-density lens transfer function retrieval (HDLTR)-based SHWS to expand its field-of-view.
View Article and Find Full Text PDFLight Sci Appl
December 2024
The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong, 999077, China.
The Shack-Hartmann wavefront sensor (SHWFS) is critical in adaptive optics (AO) for measuring wavefronts via centroid shifts in sub-apertures. Under extreme conditions like strong turbulence or long-distance transmission, wavefront information degrades significantly, leading to undersampled slope data and severely reduced reconstruction accuracy. Conventional algorithms struggle in these scenarios, and existing neural network approaches are not sufficiently advanced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!