Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber Bragg grating.

Opt Express

Microwave Photonics Research Laboratory, School of Electrical Engineering and Computer Science, University of Ottawa, Ontario K1N 6N5, Canada.

Published: June 2012

A continuously tunable microwave phase shifter based on slow and fast light effects in a tilted fiber Bragg grating (TFBG) written in an erbium/ytterbium (Er/Yb) co-doped fiber is proposed and experimentally demonstrated. By optically pumping the TFBG, the magnitude and phase responses of the cladding mode resonances are changed, which is used to introduce a tunable phase shift to the optical carrier of a single-sideband modulated signal. The beating between the phase-shifted optical carrier and the sideband will generate a microwave signal with the phase shift from the optical carrier directly translated to the generated microwave signal. A tunable phase shifter with a tunable phase shift of 280° at a microwave frequency tunable from 24 to 36 GHz is experimentally demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.014009DOI Listing

Publication Analysis

Top Keywords

phase shifter
12
tunable phase
12
phase shift
12
optical carrier
12
tunable microwave
8
shifter based
8
based slow
8
slow fast
8
fast light
8
light effects
8

Similar Publications

Design and Fabrication of Ultrathin Metallic Phase Shifters for Visible and Near-Infrared Wavelengths.

Micromachines (Basel)

January 2025

State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.

The polarization state of light is critical for biological imaging, acousto-optics, bio-navigation, and many other optical applications. Phase shifters are extensively researched for their applications in optics. The size of optical elements with phase delay that are made from natural birefringent materials is limited; however, fabricating waveplates from dielectric metamaterials is very complex and expensive.

View Article and Find Full Text PDF

All-Optical Single-Channel Plasmonic Logic Gates.

Nano Lett

January 2025

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.

Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity.

View Article and Find Full Text PDF

The cross talk and power consumption of the 2 × 2 optical switch is a key metric in the design of large-scale photonic integrated circuits (PICs). We build a theoretical model of a 2 × 2 Mach-Zehnder interferometer (MZI) optical switch, taking into account both imbalances in the arm loss and the coupler splitting ratio. The splitting ratio imbalance requirement for a given switch cross talk is summarized, which provides a guideline for the switch design.

View Article and Find Full Text PDF

A differential microelectromechanical system (MEMS) quartz resonant accelerometer with a novel oscillating readout circuit is proposed. The phase noise in a piezoelectric quartz resonant accelerometer has been systematically investigated. A high-performance front-end is used to extract the motional charge from a piezoelectric quartz resonator for the first time.

View Article and Find Full Text PDF

We propose a continuously tunable low-loss phase shifter based on weak-dispersion spoof surface plasmon polariton (SSPP) waveguide. Unlike traditional designs of SSPP devices that rely on the strong-dispersion property, we address the high insertion loss issue by leveraging the weak-dispersion region of SSPP. A detailed study reveals the relation between the waveguide length, phase shift, and insertion loss of SSPP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!