In this work, a microfluidic-chip based system for liquid-phase microextraction (LPME-chip) was developed. Sample solutions were pumped into the LPME-chip with a micro-syringe pump at a flow rate of 3-4 μL min(-1). Inside the LPME chip, the sample was in direct contact with a supported liquid membrane (SLM) composed of 0.2 μL dodecyl acetate immobilized in the pores of a flat membrane of polypropylene (25 μm thickness). On the other side of the SLM, the acceptor phase was present. The acceptor phase was either pumped at 1 μL min(-1) during extraction or kept stagnant (stop-flow). Amitriptyline, methadone, haloperidol, loperamide, and pethidine were selected as model analytes, and they were extracted from alkaline sample solution, through the SLM, and into 10 mM HCl or 100mM HCOOH functioning as acceptor phase. Subsequently, the acceptor phase was either analyzed off-line by capillary electrophoresis for exact quantification, or on-line by UV detection or electrospray ionization mass spectrometry for time profiling of concentrations. The LPME-chip was found to be highly effective, and extraction efficiencies were in the range of 52-91%. When the flow of acceptor phase was turned off during extraction (stop-flow), analyte enrichment increased linearly with the extraction time. After 10 min as an example, amitriptyline was enriched by a factor of 42 from only 30 μL sample solution, and after 120 min amitriptyline was enriched by a factor of 500 from 320 μL sample solution. This suggested that the LPME-chip has great potentials for very efficient analyte enrichments from limited sample volumes in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2012.05.023 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
This perpective delves into the emerging field of matere bonds, a novel type of noncovalent interaction involving group 7 elements such as manganese, technetium, and rhenium. Matere bonds, a new member of the σ-hole family where metal atoms act as electron acceptors, have been shown experimentally and theoretically to play significant roles in the self-assembly and stabilization of supramolecular structures both in solid-state and solution-phase environments. This perspective article explores the physical nature of these interactions, emphasizing their directionality and structural influence in various supramolecular architectures.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
The Marcus semi-classical and quantum theories of electron transfer (ET) have been extensively used to understand and predict tunneling ET reaction rates in the condensed phase. Previously, the traditional Marcus two-state model has been extended to a three-state model, which assumes a harmonic dependence of donor (D), bridge (B), and acceptor (A) free energies on the reaction (e.g.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
Naphthalenediimide (NDI)-based donor-acceptor co-polymers with tunable electronic, optical, mechanical, and transport properties have shown immense potential as n-type conducting polymers in organic (opto)electronics. During the operation, the polymers undergo reduction at different charged states, which alters their (opto)electronic properties mainly due to the formation of the quasiparticles, polaron/bipolaron. The theoretical study based on quantum mechanical calculations can provide us with a detailed understanding of their (opto)electronic properties, which is missing to a great extent.
View Article and Find Full Text PDFACS Nano
January 2025
Consiglio Nazionale delle Ricerche (CNR) - Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.
This study reveals the capability of nanostructured organic materials to undergo pseudomorphic transformations, a ubiquitous phenomenon occurring in the mineral kingdom that involves the replacement of a mineral phase with a new one while retaining the original shape and volume. Specifically, it is demonstrated that the postoxidation process induced by HOF·CHCN on preformed thiophene-based 1D nanostructures preserves their macro/microscopic morphology while remarkably altering their electro-optical properties by forming a new oxygenated phase. Experimental evidence proves that this transformation proceeds via an interface-coupled dissolution-precipitation mechanism, leading to the growth of a porous oxidized shell that varies in thickness with exposure time, enveloping the pristine smooth core.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, No. 189 Songling Road, 266101, Qingdao, CHINA.
Due to high binding energy and extremely short diffusion distance of Frenkel excitons in common organic semiconductors at early stage, mechanism of interface charge transfer-mediated free carrier generation has dominated the development of bulk heterojunction (BHJ) organic solar cells (OSCs). However, considering the advancements in materials and device performance, it is necessary to reexamine the photoelectric conversion in current-stage efficient OSCs. Here, we propose that the conjugated materials with specific three-dimensional donor-acceptor conjugated packing potentially exhibit distinctive charge photogeneration mechanism, which spontaneously split Wannier-Mott excitons to free carriers in pure phases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!