17β-Estradiol is critical for the preovulatory induction of prostaglandin E(2) synthesis in mice.

Mol Cell Endocrinol

Department of Biochemistry, Kochi University, School of Medicine, Nankoku, Kochi 783-8505, Japan.

Published: October 2012

Aromatase-deficient (ArKO) mice are totally anovulatory due to insufficient estrogen production. However, sequential administrations of high doses of 17β-estradiol (E2) and gonadotropins were found to induce ovulation in these mice. Here, we examined how the ovulatory stimulation for ArKO mice alters the expressions of genes related to prostaglandin (PG) E(2) metabolism and ovarian contents of PGE(2), as PGE(2) is one of the critical mediators of ovulatory induction. The ovulatory stimulation significantly increased mRNA expressions of prostaglandin-endoperoxide synthase 2, PGE(2) receptor type 4 and sulfotransferase family 1E, member 1, in preovulatory ArKO ovaries. In contrast, it suppressed the mRNA expression of 15-hydroxyprostaglandin dehydrogenase. Furthermore, significant elevation in the PGE(2) contents was detected in the preovulatory ovaries of ArKO mice after stimulation with E2 plus ovulatory doses of gonadotropins. Thus, these analyses demonstrate a requirement of E2 for the preovulatory enhancement of PGE(2) synthesis, leading to future success in ovulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2012.06.006DOI Listing

Publication Analysis

Top Keywords

arko mice
12
ovulatory stimulation
8
mice
5
pge2
5
17β-estradiol critical
4
preovulatory
4
critical preovulatory
4
preovulatory induction
4
induction prostaglandin
4
prostaglandin synthesis
4

Similar Publications

Article Synopsis
  • Androgens play a key role in regulating skeletal muscle mass, but the exact mechanism behind muscle loss due to androgen deficiency is not fully understood.
  • Research using different mouse models revealed that systemic knockout of androgen receptors leads to reduced muscle strength and mass, while selective knockout affects strength without changing mass, indicating non-myofiber influences.
  • The study highlighted epidermal growth factor receptor (EGFR) as a significant protein linked to androgen levels, showing that EGFR contributes to muscle mass regulation and protein synthesis, especially in males.
View Article and Find Full Text PDF

Spermatogenesis is a highly regulated process dependent on androgen receptor (AR) signaling in Sertoli cells. However, the pathogenic mechanisms of spermatogenic failure, by which loss of AR impairs downstream target genes to affect Sertoli cell function, remain incompletely understood. By using microarray analysis, we identified several AR-regulated genes involved in the maturation of spermatogenesis, including chromodomain Y-like protein (CDYL) and transition proteins 1 (TNP-1), that were significantly decreased in ARKO mouse testes.

View Article and Find Full Text PDF

High incidence of sebaceous gland inflammation in aldose reductase-deficient mice.

Chem Biol Interact

April 2024

Department of Ophthalmology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA. Electronic address:

Aldose reductase is a member of the 1B1 subfamily of aldo-keto reductase gene superfamily. The action of aldose reductase (AR) has been implicated in the pathogenesis of a variety of disease states, most notably complications of diabetes mellitus including neuropathy, retinopathy, nephropathy, and cataracts. To explore for mechanistic roles for AR in disease pathogenesis, we established mutant strains produced using Crispr-Cas9 to inactivate the AKR1B3 gene in C57BL6 mice.

View Article and Find Full Text PDF

Estradiol is an important regulator of bone accumulation and maintenance. Circulating estrogens are primarily produced by the gonads. Aromatase, the enzyme responsible for the conversion of androgens to estrogen, is expressed by bone marrow cells (BMCs) of both hematopoietic and nonhematopoietic origin.

View Article and Find Full Text PDF

Hyperandrogenemia and polycystic ovary syndrome are a result of the imbalance of androgen levels in females. Androgen receptor (Ar) mediates the effect of androgen, and this study examines how neuronal Ar in the central nervous system mediates metabolism under normal and increased androgen conditions in female mice. The neuron-specific ARKO mouse (SynARKO) was created from female (Ar fl/wt; synapsin promoter driven Cre) and male (Ar fl/y) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!