Vertebrates cope with physiological challenges using two major mechanisms: the immune system and the hypothalamic pituitary-adrenal axis (e.g., the glucocorticoid stress response). Because the two systems are tightly integrated, we need simultaneous studies of both systems, in a range of species, to understand how vertebrates respond to novel challenges. To clarify how glucocorticoids modulate the amphibian immune system, we measured three immune parameters and plasma corticosterone (CORT), before and after inflicting a stressor (capture and captive confinement) on introduced cane toads (Rhinella marina) near their invasion front in Australia. Stress increased CORT levels, decreased complement lysis capacity, increased leukocyte oxidative burst, and did not change heterologous erythrocyte agglutination. The strength of the CORT response was positively correlated with leukocyte oxidative burst, and morphological features associated with invasiveness in cane toads (relative leg length) were correlated with stress responsiveness. No immune parameter that we measured was affected by a toad's infection by a parasitic nematode (Rhabdias pseudosphaerocephala), but the CORT response was muted in infected versus uninfected toads. These results illustrate the complex immune-stress interactions in wild populations of a non-traditional model vertebrate species, and describe immune adaptations of an important invasive species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yhbeh.2012.06.001DOI Listing

Publication Analysis

Top Keywords

cane toads
12
toads rhinella
8
rhinella marina
8
immune system
8
leukocyte oxidative
8
oxidative burst
8
cort response
8
immune
5
corticosterone-immune interactions
4
interactions captive
4

Similar Publications

The invasion of cane toads (Rhinella marina) across tropical Australia has resulted in the rapid evolution of traits that enable higher rates of dispersal, and that adapt toads to hot dry climates. In anurans, a larger heart facilitates both locomotor activity and desiccation tolerance. Heart size is also often affected, either directly or indirectly, by parasite infections.

View Article and Find Full Text PDF

Redescription of the holotype of the cane toad Rana marina Linnaeus, 1758 (Anura: Bufonidae).

Zootaxa

May 2024

Laboratório de Herpetologia e Comportamento Animal; Departamento de Ecologia; Instituto de Ciências Biológicas; Universidade Federal de Goiás; 74690-900 Goiânia; GO; Brazil.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied yellow-spotted monitors, large varanid lizards in tropical Australia, finding they reach sexual maturity in under a year but have short lifespans, rarely living beyond 2 years for females and 4 for males, particularly before the arrival of toxic cane toads.
  • The study revealed a faster life history for these lizards compared to other monitor species, with males growing rapidly during the wet season but facing high predation risk from pythons.
  • The yellow-spotted monitors are vital to their ecosystem as apex predators, but their high feeding rates and communal nesting make food webs more susceptible to disruption from invasive cane toads.
View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) has been widely used in genetics research for decades. Contamination from nuclear DNA of mitochondrial origin (NUMTs) can confound studies of phylogenetic relationships and mtDNA heteroplasmy. Homology searches with mtDNA are widely used to detect NUMTs in the nuclear genome.

View Article and Find Full Text PDF

Parasites may suppress the immune function of infected hosts using microRNAs (miRNAs) to prevent protein production. Nonetheless, little is known about the diversity of miRNAs and their mode(s) of action. In this study, we investigated the effects of infection by a parasitic lungworm (Rhabdias pseudosphaerocephala) on miRNA and mRNA expression of its host, the invasive cane toad (Rhinella marina).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!