Calcium (Ca) is a ubiquitous second messenger that regulates many biological functions. The elementary events of local Ca signaling are Ca sparks, which occur randomly in time and space, and integrate to produce global signaling events such as intra- and intercellular Ca waves and whole-cell Ca oscillations. Despite extensive experimental characterization in many systems, the transition from local random to global synchronous events is still poorly understood. Here we show that criticality, a ubiquitous dynamical phenomenon in nature, is responsible for the transition from local to global Ca signaling. We demonstrate this first in a computational model of Ca signaling in a cardiac myocyte and then experimentally in mouse ventricular myocytes, complemented by a theoretical agent-based model to delineate the underlying dynamics. We show that the interaction between the Ca release units via Ca-induced Ca release causes self-organization of Ca spark clusters. When the coupling between Ca release units is weak, the cluster-size distribution is exponential. As the interactions become strong, the cluster-size distribution changes to a power-law distribution, which is characteristic of criticality in thermodynamic and complex nonlinear systems, and facilitates the formation and propagation of Ca waves and whole-cell Ca oscillations. Our findings illustrate how criticality is harnessed by a biological cell to regulate Ca signaling via self-organization of random subcellular events into cellular-scale oscillations, and provide a general theoretical framework for the transition from local Ca signaling to global Ca signaling in biological cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368125 | PMC |
http://dx.doi.org/10.1016/j.bpj.2012.05.001 | DOI Listing |
Porcine circovirus type 2 (PCV2) is the major causative agent of postweaning multisystemic wasting syndrome which leads to significant economic losses in the global swine industry. In China, there is a widespread dissemination of PCV2 infection in the pig population. Serological diagnosis of the disease is considered as an effective control measure.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
Purpose: Septic cardiomyopathy (SCM) is a significant global public health concern characterized by substantial morbidity and mortality, which has not been improved for decades due to lack of early diagnosis and effective therapies. This study aimed to identify hub biomarkers in SCM and explore their potential mechanisms.
Methods: We utilized the GSE53007 and GSE207363 datasets for transcriptome analysis of normal and SCM mice.
Oncol Res
December 2024
Department of Pathology, College of Medicine, King Khalid University, Abha, 62521, Saudi Arabia.
Background: Gastric cancer (GC) remains a global health burden and is often characterized by heterogeneous molecular profiles and resistance to conventional therapies. The phosphoinositide 3-kinase and PI3K and Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathways play pivotal roles in GC progression, making them attractive targets for therapeutic interventions.
Methods: This study applied a computational and molecular dynamics simulation approach to identify and characterize SBL-JP-0004 as a potential dual inhibitor of JAK2 and PI3KCD kinases.
Netw Neurosci
December 2024
Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.
The integration-segregation framework is a popular first step to understand brain dynamics because it simplifies brain dynamics into two states based on global versus local signaling patterns. However, there is no consensus for how to best define the two states. Here, we map integration and segregation to order and disorder states from the Ising model in physics to calculate state probabilities, and , from functional MRI data.
View Article and Find Full Text PDFeGastroenterology
October 2024
Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Alcohol-associated liver disease (ALD) is a growing global health concern and its prevalence and severity are increasing steadily. While bacterial endotoxin translocation into the portal circulation is a well-established key factor, recent evidence highlights the critical role of sterile inflammation, triggered by diverse stimuli, in alcohol-induced liver injury. This review provides a comprehensive analysis of the complex interactions within the hepatic microenvironment in ALD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!