trying...
227133932013051320211021
1875-8584261-22013Behavioural neurologyBehav NeurolDisentangling the neuroanatomical correlates of perseveration from unilateral spatial neglect.131138131-810.3233/BEN-2012-110235Perseverative behavior, manifest as re-cancelling or re-visiting targets, is distinct from spatial neglect. Perseveration is thought to reflect frontal or parietal lobe dysfunction, but the neuroanatomical correlates remain poorly defined and the interplay between neglect and perseveration is incompletely understood. We enrolled 87 consecutive patients with diffusion-weighted, perfusion-weighted imaging, and spatial neglect testing within 24 hours of right hemisphere ischemic stroke. The degrees of spatial neglect and perseveration were analyzed. Perseveration was apparent in 46% (40/87) of the patients; 28% (24/87) showed perseveration only; 18% (16/87) showed both perseveration and neglect; and 3% (3/87) showed neglect only. Perseverative behaviors occur in an inverted "U" shape: little neglect was associated with few perseverations; moderate neglect with high perseverations; and in severe neglect targets may not enter consciousness and perseverative responses decrease. Brodmann areas of dysfunction, and the caudate and putament, were assessed and volumetrically measured. In this study, the caudate and putamen were not associated with perseveration. After controlling for neglect, and volume of dysfunctional tissue, only Brodmann area 46 was associated with perseveration. Our results further support the notion that perseveration and neglect are distinct entities; while they often co-occur, acute dorsolateral prefrontal cortex ischemia is associated with perseveration specifically.KleinmanJonathan TJTDepartment of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.DuBoisJeffery CJCNewhartMelissaMHillisArgye EAEengR01 NS047691NSNINDS NIH HHSUnited StatesR01 NS047691-08NSNINDS NIH HHSUnited StatesR01NS47691NSNINDS NIH HHSUnited StatesJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov't
NetherlandsBehav Neurol89145850953-4180IMAdultAgedAged, 80 and overCaudate NucleuspathologyCerebral CortexpathologyDiffusion Magnetic Resonance ImagingmethodsFemaleHumansMagnetic Resonance AngiographymethodsMaleMiddle AgedNeuroimagingmethodsPerceptual DisorderscomplicationspathologyPsychomotor PerformancePutamenpathologyStereotypic Movement DisordercomplicationspathologyStrokecomplicationspathology
201262160201262160201351560201311ppublish22713393NIHMS366489PMC345928810.3233/BEN-2012-1102359U36225842633760J Cogn Neurosci. 2009 Nov;21(11):2073-8419016599Cortex. 2009 Mar;45(3):300-1218708187Brain. 2010 Mar;133(Pt 3):880-9420028714Neuropsychologia. 2010 Jul;48(9):2758-6320433859Stroke. 2010 Dec;41(12):2817-2121030699Neurology. 2001 Mar 13;56(5):670-211245724Neuropsychologia. 2002;40(6):594-60411792401Neuropsychologia. 2002;40(11):1794-80312062891Brain Cogn. 2003 Nov;53(2):117-2014607129Neurology. 2004 Aug 10;63(3):468-7415304577Brain. 1967 Jun;90(2):429-486028255Neurology. 1973 Jun;23(6):658-644736313Neuropsychologia. 1971 Dec;9(4):451-85164380Neuropsychologia. 1980;18(2):123-327383304J Neurosci. 1984 Jul;4(7):1863-746737043J Clin Exp Neuropsychol. 1986 Dec;8(6):710-263782451Neurology. 1987 Nov;37(11):1736-413670611Cortex. 1989 Jun;25(2):231-72758849J Neurol Neurosurg Psychiatry. 1990 Jun;53(6):487-912380729Cortex. 1990 Sep;26(3):307-172249435J Neurol Neurosurg Psychiatry. 1992 Jun;55(6):431-61619406Brain. 1998 Sep;121 ( Pt 9):1759-709762963Neurology. 1999 May 12;52(8):1569-7610331680Brain. 1965 Mar;88:1-1014280275J Neurosci. 2005 Mar 23;25(12):3161-715788773J Cogn Neurosci. 2005 Feb;17(2):340-5415811244Brain. 2006 Aug;129(Pt 8):2148-5716870885J Neurosci. 2006 Aug 2;26(31):8069-7316885220Cortex. 2006 Aug;42(6):911-2017131597Brain Res. 2006 Nov 6;1118(1):106-1516979143Brain Cogn. 2007 Jun;64(1):50-917174459Brain Cogn. 2008 Oct;68(1):49-5218406504Neurology. 2008 Oct 28;71(18):1439-4418955687Cogn Behav Neurol. 2008 Dec;21(4):249-5319057176Cortex. 2009 Mar;45(3):293-918708186Neurocase. 2009 Aug;15(4):311-719370480
trying2...
trying...
5013501MCID_676f085c2bf57d487f0c91b3 39726305 39724139 39720230 39715878 39715271 spatial "spatial"[All Fields] OR "spatialization"[All Fields] OR "spatializations"[All Fields] OR "spatialized"[All Fields] OR "spatially"[All Fields] neglect "neglect"[All Fields] OR "neglected"[All Fields] OR "neglectful"[All Fields] OR "neglecting"[All Fields] OR "neglects"[All Fields] ("spatial"[All Fields] OR "spatialization"[All Fields] OR "spatializations"[All Fields] OR "spatialized"[All Fields] OR "spatially"[All Fields]) AND ("neglect"[All Fields] OR "neglected"[All Fields] OR "neglectful"[All Fields] OR "neglecting"[All Fields] OR "neglects"[All Fields]) trying2...
trying...
3972630520241227
1613-68292024Dec26Small (Weinheim an der Bergstrasse, Germany)SmallLabel-Free SERS Analysis of Biological and Physical Information Heterogeneity of Nanoscale Extracellular Vesicle by Matching Specific Sizes of Enhanced Particles.e2409806e240980610.1002/smll.202409806The heterogeneity of extracellular vesicles (EVs) surface information represents different functions, which is neglected in previous studies. In this study, a label-free SERS analysis approach is demonstrated to study fundamental EV biological and physical information heterogeneity by matching specific sizes of nano-enhanced particles. This strategy reveals informative, comprehensive, and high-quality SERS spectra of the overall exosome surface, and effectively circumvents the key information loss caused by the spatial resistance of NPs binding to the 293 exosomes' concave structure. The classification of normal and cancerous cell-derived exosomes by PCA method, the accuracy is improved from 91.2% to 95.1% by optimizing sizes of nano-enhanced particles. In addition, stem cell-derived EVs of diverse sizes and morphologies similarly show acuity of spectrum variation to NPs size, which is conductive to qualitative studies. This new strategy will offer a widened in-depth understanding of the surface information, size, and morphology of EVs, which can be applied to the study of biological functions.© 2024 Wiley‐VCH GmbH.ZhangRuiyuanRKey Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.GuoYuYKey Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.HuangChenCDepartment of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.FangJixiangJ0000-0003-3618-2144Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.eng21874104National Natural Science Foundation of China22074115National Natural Science Foundation of China22474106National Natural Science Foundation of Chinaxtr062022002Fundamental Research Funds for the Central Universities2024SF-GJHX-36Shaanxi Province Key Core Technology projectJournal Article20241226
GermanySmall1012353381613-6810IMbiological and physical informationenhanced particlesextracellular vesicleheterogeneitylabel‐free SERS analysis
20241222024102120241227620202412276202024122732aheadofprint3972630510.1002/smll.202409806G. Raposo, W. Stoorvogel, J. Cell Biol. 2013, 200, 373.M. Colombo, G. Raposo, C. Thery, Annu. Rev. Cell Biol. 2014, 30, 255.C. Théry, L. Zitvogel, S. Amigorena, Nat. Rev. Immunol. 2002, 2, 569.R. Crescitelli, C. Lasser, T. G. Szabo, A. Kittel, M. Eldh, I. Dianzani, E. I. Buzas, J. O. Lötvall, J. Extracell. Vesicles 2013, 2, 20677.H. Valadi, K. Ekstrom, A. Bossios, M. Sjöstrand, J. J. Lee, J. O. Lötvall, Nat. Cell Biol. 2007, 9, 654.D. W. Greening, S. K. Gopal, R. A. Mathias, L. Liu, J. Y. Sheng, H. J. Zhu, R. J. Simpson, Semin. Cell Dev. Biol. 2015, 40, 60.Z. Y. Abd Elmageed, Y. J. Yang, R. J. Thomas, M. Ranjan, D. Mondal, K. Moroz, Z. D. Fang, B. M. Rezk, K. Moparty, S. C. Sikka, O. Sartor, A. B. Abdel‐Mageed, Stem Cells 2014, 32, 983.B. H. Sung, T. Ketova, D. Hoshino, A. Zijlstra, A. M. Weaver, Nat. Commun. 2015, 6, 7164.K. Al‐Nedawi, B. Meehan, J. Micallef, V. Lhotak, L. May, A. Guha, J. Rak, Nat. Cell Biol. 2008, 10, 619.E. An astasiadou, F. J. Slack, Science 2014, 346, 619.L. Zhao, W. Liu, J. Xiao, B. Cao, Cancer Lett. 2015, 356, 339.W. R. Algar, D. E. Prasuhn, M. H. Stewart, T. L. Jennings, J. B. Blanco‐Canosa, P. E. Dawson, I. L. Medintz, Bioconjugate Chem. 2011, 22, 825.E. Warner, D. B. Plewes, K. A. Hill, P. A. Causer, J. T. Zubovits, R. A. Jong, M. R. Cutrara, G. DeBoer, M. J. Yaffe, S. J. Messner, W. S. Meschino, C. A. Piron, S. A. Narod, J. Am. Med. Assoc. 2004, 292, 1317.C. C. Liu, X. N. Xu, B. Li, B. Situ, W. L. Pan, Y. Hu, T. X. An, S. H. Yao, L. Zheng, Nano Lett. 2018, 18, 4226.P. Ziaei, E. Berkman, M. G. Norton, ACS Appl. Nano Mater. 2018, 1, 2004.W. S. Wang, J. Luo, S. T. Wang, Adv. Healthcare Mater. 2018, 7, 1800484.R. E. Lane, D. Korbie, M. M. Hill, M. Trau, Clin. Transl. Med. 2018, 7, 14.A. Y. Wu, K. Ueda, C. P. Lai, Proteomics 2019, 19, 1800162.T. Yamashita, H. Kamada, S. Kanasaki, Y. Maeda, K. Nagano, Y. Abe, M. Inoue, Y. Yoshioka, Y. Tsutsumi, S. Katayama, M. Inoue, S. Tsunoda, Pharmazie 2013, 68, 969.S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, Z. Q. Tian, Nat. Rev. Mater. 2016, 1, 16021.L. Tirinato, F. Gentile, D. Di Mascolo, M. L. Coluccio, G. Das, C. Liberale, S. A. Pullano, G. Perozziello, M. Francardi, A. Accardo, F. De Angelis, P. Candeloro, E. Di Fabrizio, Microelectron. Eng. 2012, 97, 337.S. Dong, Y. Wang, Z. Liu, W. Zhang, K. Yi, X. Zhang, X. Zhang, C. Jiang, S. Yang, F. Wang, X. Xiao, ACS Appl. Mater. Interfaces 2020, 12, 5136.C. Krafft, E. B. Osei, J. Popp, I. Nazarenko, Proc. SPIE 11236, Biomedical Vibrational Spectroscopy 2020: Advances in Research and Industry, San Francisco, California, United States, February 2020.L. Guerrini, E. Garcia‐Rico, A. O'Loghlen, V. Giannini, R. A. Alvarez‐Puebla, Cancers 2021, 13, 2179.H. Shin, S. Oh, S. Hong, M. Kang, D. Kang, Y. G. Ji, B. H. Choi, K. W. Kang, H. Jeong, Y. Park, H. K. Kim, Y. Choi, ACS Nano 2020, 14, 5435.S. Stremersch, M. Marro, B.‐E. Pinchasik, P. Baatsen, A. Hendrix, S. C. D e Smedt, P. Loza‐Alvarez, A. G. Skirtach, K. Raemdonck, K. Braeckmans, SmallSmall 2016, 12, 3292.E. C. Le Ru, P. G. Etchegoin, Annu. Rev. Phys. Chem. 2012, 63, 65.L. L. Zhang, Y. Guo, R. Hao, Y. F. Shi, H. J. You, H. Nan, Y. Z. Dai, D. J. Liu, D. Y. Lei, J. X. Fang, Nat. Commun. 2021, 12, 6849.L. F. Han, C. C. Zhu, Z. Tan, J. Wang, X. W. Liao, X. H. Xia, C. Wang, Chem. Commun. 2023, 59, 7967.H. Shin, H. Jeong, J. Park, S. Hong, Y. Choi, ACS Sens. 2018, 3, 2637.E. A. Kwizera, R. O'Con nor, V. Vinduska, M. Williams, E. R. Butch, S. E. Snyder, X. Chen, X. Huang, Theranostics 2018, 8, 2722.I. Tatischeff, E. Larquet, J. M. Falcon‐perez, P. Turpin, S. G. Kruglik, J. Extracell. Vesicles 2012, 1, 19179.C. K. Kuhl, S. Schrading, C. C. Leutner, N. Morakkabati‐Spitz, E. Wardelmann, R. Fimmers, W. Kuhn, H. H. Schild, J. Clin. Oncol. 2005, 23, 8469.C. Lee, R. P. Carney, S. Hazari, Z. J. Smith, A. Knudson, C. S. Robertson, K. S. Lam, S. Wachsmann‐Hogiu, Nanoscale 2015, 7, 9290.F. Lavialle, S. Deshayes, F. Gonnet, E. Larquet, S. G. Kruglik, N. Boisset, R. Daniel, A. Alfsen, I. Tatischeff, Int. J. Pharm. 2009, 380, 206.L. T. Kerr, L. Gubbins, K. W. Gorzel, S. Sharma, M. Kell, A. M. Cann, B. M. Hennelly, in Proc. SPIE Vol. 9129, Jurgen Popp; Valery V Tuchin; Dennis L Matthews, 2014, 91292Q.F. S. Manciu, J. D. Ciubuc, K. Parra, M. Manciu, K. E. Bennet, P. Valenzuela, E. M. Sundin, W. G. Durrer, L. Reza, G. Francia, Technol. Cancer Res. Treat. 2017, 16, 461.C. Kallaway, L. M. Almond, H. Barr, J. Wood, J. Hutchings, C. Kendall, N. Stone, Photodiagn. Photodyn. Ther. 2013, 10, 207.G. Shetty, C. Kendall, N. Shepherd, N. Stone, H. Barr, Br. J. Cancer 2006, 94, 1460.K. A. Willets, Anal. Bioanal. Chem. 2009, 394, 85.H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, H. Lee, Nat. Biotechnol. 2014, 32, 490.T. S. Martins, D. Trindade, M. Vaz, I. Campelo, M. Almeida, G. Trigo, O. A. da Cruz e Silva, A. G. J. Henriques, J. Neurochem. 2021, 156, 162.K. M. Kanninen, N. Bister, J. Koistinaho, T. Malm, Biochim. Biophys. Acta 2016, 1862, 403.N. G. Bastús, J. Comenge, V. Puntes, Langmuir 2011, 27, 11098.J. C. Fraire, S. Stremersch, D. Bouckaert, T. Monteyne, T. D. Beer, P. Wuytens, R. D. Rycke, A. G. Skirtach, K. Raemdonck, S. D. Smedt, K. Braeckmans, ACS Appl. Mater. Interfaces 2019, 11, 39424.J. Lim, J. Nam, S. Yang, H. Shin, Y. Jang, G. Bae, T. Kang, K. Lim, Y. Choi, Anal. Chem. 2015, 87, 11652.K.‐W. Kang, H. Kim, W. Hur, J.‐h. Jung, S. J. Jeong, H. Shin, D. Seo, H. Jeong, B. Choi, S. Hong, H. K. Kim, Y. Choi, J. Park, K. Y. Lee, K. P. Kim, Y. Park, Mol. Cell. Proteomics 2021, 20, 100017.B. D. Chan, W. Y. Wong, M. M. L. Lee, W. C. S. Cho, B. K. Yee, Y. W. Kwan, W. C. S. Tai, Proteomics 2019, 19, 1800149.
3972413920241226
1935-273518122024Dec26PLoS neglected tropical diseasesPLoS Negl Trop DisSpatial associations of Hansen's disease and schistosomiasis in endemic regions of Minas Gerais, Brazil.e0012682e001268210.1371/journal.pntd.0012682Brazil has the second highest case count of Hansen's disease (leprosy, HD), but factors contributing to transmission in highly endemic areas of the country remain unclear. Recent studies have shown associations of helminth infection and leprosy, supporting a biological plausibility for increased leprosy transmission in areas with helminths. However, spatial analyses of the overlap of these infections are limited. Therefore, we aimed to spatially analyze these two diseases in a co-endemic area of Minas Gerais, Brazil, in order to identify potential epidemiologic associations.An ecological study using public health surveillance records and census data was conducted to investigate whether the occurrence of HD -and specifically multibacillary (MB) disease- was associated with the presence of schistosomiasis in a community of 41 municipalities in eastern Minas Gerais, Brazil from 2011 to 2015. Multivariate logistic regression and spatial cluster analyses using geographic information systems (GIS) were performed.The average annual incidence of HD in the study area was 35.3 per 100,000 while Schistosoma mansoni average annual incidence was 26 per 100,000. Both HD and schistosomiasis were spatially distributed showing significant clustering across the study area. Schistosomiasis was present in 10.4% of the tracts with HD and thirteen high-high clusters of local bivariate autocorrelation for HD and schistosomiasis cases were identified. A multivariate non-spatial analysis found that census tracts with MB disease were more likely to have schistosomiasis when adjusted for population density, household density, and household income (aOR = 1.7, 95% CI 1.0, 2.7). This remained significant when accounting for spatial correlation (aOR = 1.1, 95% CI (1.0, 1.2)).We found clustering of both HD and schistosomiasis in this area with some statistically significant overlap of multibacillary HD with S. mansoni infection. Not only did we provide an effective approach to study the epidemiology of two endemic neglected tropical diseases with geographic spatial analyses, we highlight the need for further clinical and translational studies to study the potential epidemiologic associations uncovered.Copyright: © 2024 Stephens et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.StephensJessica LJLDepartment of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America.FragaLucia A OLAOUniversidade Federal Juiz de Fora-Campus Governador Valadares, Governador Valadares, Minas Gerais, Brazil.Universidade Vale do Rio Doce, Governador Valadares, Minas Gerais, Brazil.FerreiraJosé AJAFaculdade da Saúde e Ecologia Humana (FASEH), Vespasiano, Minas Gerais, Brazil.De MondesertLauraLHubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America.KitronUrielUDepartment of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America.ClennonJulie AJADepartment of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America.FairleyJessica KJK0000-0003-4086-9272Universidade Vale do Rio Doce, Governador Valadares, Minas Gerais, Brazil.Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America.engJournal Article20241226
United StatesPLoS Negl Trop Dis1012914881935-2727IMThe authors have declared that no competing interests exist.
20243252024116202412261816202412261816202412261552aheadofprint3972413910.1371/journal.pntd.0012682PNTD-D-24-00445
3972023020241225
1662-4548182024Frontiers in neuroscienceFront NeurosciSTAFNet: an adaptive multi-feature learning network via spatiotemporal fusion for EEG-based emotion recognition.15199701519970151997010.3389/fnins.2024.1519970Emotion recognition using electroencephalography (EEG) is a key aspect of brain-computer interface research. Achieving precision requires effectively extracting and integrating both spatial and temporal features. However, many studies focus on a single dimension, neglecting the interplay and complementarity of multi-feature information, and the importance of fully integrating spatial and temporal dynamics to enhance performance.We propose the Spatiotemporal Adaptive Fusion Network (STAFNet), a novel framework combining adaptive graph convolution and temporal transformers to enhance the accuracy and robustness of EEG-based emotion recognition. The model includes an adaptive graph convolutional module to capture brain connectivity patterns through spatial dynamic evolution and a multi-structured transformer fusion module to integrate latent correlations between spatial and temporal features for emotion classification.Extensive experiments were conducted on the SEED and SEED-IV datasets to evaluate the performance of STAFNet. The model achieved accuracies of 97.89% and 93.64%, respectively, outperforming state-of-the-art methods. Interpretability analyses, including confusion matrices and t-SNE visualizations, were employed to examine the influence of different emotions on the model's recognition performance. Furthermore, an investigation of varying GCN layer depths demonstrated that STAFNet effectively mitigates the over-smoothing issue in deeper GCN architectures.In summary, the findings validate the effectiveness of STAFNet in EEG-based emotion recognition. The results emphasize the critical role of spatiotemporal feature extraction and introduce an innovative framework for feature fusion, advancing the state of the art in emotion recognition.Copyright © 2024 Hu, He, Qian, Liu, Qiao, Zhang and Xiong.HuFoFCollege of Information Engineering, Zhejiang University of Technology, Hangzhou, China.HeKailunKCollege of Information Engineering, Zhejiang University of Technology, Hangzhou, China.QianMengyuanMCollege of Information Engineering, Zhejiang University of Technology, Hangzhou, China.LiuXiaofengXCollege of Information Engineering, Zhejiang University of Technology, Hangzhou, China.QiaoZukangZDepartment of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.ZhangLekaiLThe School of Design and Architecture, Zhejiang University of Technology, Hangzhou, China.XiongJunlongJDepartment of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.engJournal Article20241210
SwitzerlandFront Neurosci1014784811662-453XEEGadaptive adjacency matrixdeep learningemotion recognitionspatiotemporal fusionThe authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
2024103020241118202412256212024122562020241225420202411epublish39720230PMC1166649110.3389/fnins.2024.1519970Algarni M., Saeed F., Al-Hadhrami T., Ghabban D., Al-Sarem M. (2022). Deep learning-based approach for emotion recognition using electroencephalography (EEG) signals using bi-directional long short-term memory (BI-LSTM). Sensors 22:2976. 10.3390/s2208297610.3390/s22082976PMC903305335458962Bagherzadeh S., Maghooli K., Shalbaf A., Maghsoudi A. (2022). Emotion recognition using effective connectivity and pre-trained convolutional neural networks in EEG signals. Cogn. Neurodyn. 16, 1–20. 10.1007/s11571-021-09756-010.1007/s11571-021-09756-0PMC950831736237402Bao G., Yang K., Tong L., Shu J., Zhang R., Wang L., et al. . (2022). Linking multi-layer dynamical gcn with style-based recalibration cnn for EEG-based emotion recognition. Front. Neurorobot. 16:834952. 10.3389/fnbot.2022.83495210.3389/fnbot.2022.834952PMC890753735280845Berboth S., Morawetz C. (2021). Amygdala-prefrontal connectivity during emotion regulation: a meta-analysis of psychophysiological interactions. Neuropsychologia 153:107767. 10.1016/j.neuropsychologia.2021.10776710.1016/j.neuropsychologia.2021.10776733516732Chang X., Ren P., Xu P., Li Z., Chen X., Hauptmann A. (2023). A comprehensive survey of scene graphs: Generation and application. IEEE Trans. Pattern Anal. Mach. Intell. 45, 1–26. 10.1109/TPAMI.2021.313760510.1109/TPAMI.2021.313760534941499Chen B., Cao Q., Hou M., Zhang Z., Lu G., Zhang D. (2021). Multimodal emotion recognition with temporal and semantic consistency. IEEE/ACM Trans. Audio Speech Lang. Proc. 29, 3592–3603. 10.1109/TASLP.2021.312933110.1109/TASLP.2021.3129331Chen J. X., Jiang D. M., Zhang Y. N. (2019). A hierarchical bidirectional gru model with attention for EEG-based emotion classification. IEEE Access 7, 118530–118540. 10.1109/ACCESS.2019.293681710.1109/ACCESS.2019.2936817Cheng C., Yu Z., Zhang Y., Feng L. (2023). Hybrid network using dynamic graph convolution and temporal self-attention for EEG-based emotion recognition. IEEE Trans. Neural Netw. Learn. Syst. 10.1109/TNNLS.2023.331931510.1109/TNNLS.2023.331931537831554Dar M. N., Akram M. U., Khawaja S. G., Pujari A. N. (2020). CNN and LSTM-based emotion charting using physiological signals. Sensors 20:4551. 10.3390/s2016455110.3390/s20164551PMC747208532823807Duan R.-N., Zhu J.-Y., Lu B.-L. (2013). “Differential entropy feature for eeg-based emotion classification,” in International IEEE/EMBS Conference on Neural Engineering (San Diego, CA: IEEE; ), 81–84.Hu F., Qian M., He K., Zhang W.-A., Yang X. (2024a). A novel multi-feature fusion network with spatial partitioning strategy and cross-attention for armband-based gesture recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 32, 3878–3890. 10.1109/TNSRE.2024.348721610.1109/TNSRE.2024.348721639466868Hu F., Zhang L., Yang X., Zhang W.-A. (2024b). EEG-based driver fatigue detection using spatio-temporal fusion network with brain region partitioning strategy. IEEE Trans. Intellig. Transp. Syst. 25, 9618–9630. 10.1109/TITS.2023.334851710.1109/TITS.2023.3348517Huang X., Wang S.-J., Liu X., Zhao G., Feng X., Pietikäinen M. (2019). Discriminative spatiotemporal local binary pattern with revisited integral projection for spontaneous facial micro-expression recognition. IEEE Trans. Affect. Comp. 10, 32–47. 10.1109/TAFFC.2017.271335910.1109/TAFFC.2017.2713359Huang Z., Ma Y., Su J., Shi H., Jia S., Yuan B., et al. . (2023). CDBA: a novel multi-branch feature fusion model for eeg-based emotion recognition. Front. Physiol. 14:1200656. 10.3389/fphys.2023.120065610.3389/fphys.2023.1200656PMC1039924037546532Islam M., Nooruddin S., Karray F., Muhammad G. (2024). Enhanced multimodal emotion recognition in healthcare analytics: a deep learning based model-level fusion approach. Biomed. Signal Process. Control 94:106241. 10.1016/j.bspc.2024.10624110.1016/j.bspc.2024.106241Jenke R., Peer A., Buss M. (2014). Feature extraction and selection for emotion recognition from EEG. IEEE Trans. Affect. Comp. 5:2339834. 10.1109/TAFFC.2014.233983410.1109/TAFFC.2014.2339834Li C., Tang T., Pan Y., Yang L., Zhang S., Chen Z., et al. . (2024). An efficient graph learning system for emotion recognition inspired by the cognitive prior graph of eeg brain network. IEEE Trans. Neural Netw. Learn. Syst. 10.1109/TNNLS.2024.340566310.1109/TNNLS.2024.340566338837920Li J., Pan W., Huang H., Pan J., Wang F. (2023). Stgate: spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition. Front. Hum. Neurosci. 17:1169949. 10.3389/fnhum.2023.116994910.3389/fnhum.2023.1169949PMC1013347037125349Li M., Qiu M., Kong W., Zhu L., Ding Y. (2023). Fusion graph representation of EEG for emotion recognition. Sensors 23:1404. 10.3390/s2303140410.3390/s23031404PMC991989236772444Li W., Zhang Z., Song A. (2020). Physiological-signal-based emotion recognition: an odyssey from methodology to philosophy. Measurement 172:108747. 10.1016/j.measurement.2020.10874710.1016/j.measurement.2020.108747Meneses Alarcão S., Fonseca M. J. (2017). Emotions recognition using EEG signals: a survey. IEEE Trans. Affective Comp. 10, 374–393. 10.1109/TAFFC.2017.271467110.1109/TAFFC.2017.2714671Ngai W., Xie H., Zou D., Chou K. (2021). Emotion recognition based on convolutional neural networks and heterogeneous bio-signal data sources. Inform. Fusion 77, 107–117. 10.1016/j.inffus.2021.07.00710.1016/j.inffus.2021.07.007Niu W., Ma C., Sun X., Li M., Gao Z. (2023). A brain network analysis-based double way deep neural network for emotion recognition. IEEE Trans. Neural Syst. Rehab. Eng. 31, 917–925. 10.1109/TNSRE.2023.323643410.1109/TNSRE.2023.323643437018673Pu H., Chen Z., Liu J., Yang X., Ren C., Liu H., et al. . (2023). Research on decision-level fusion method based on structural causal model in system-level fault detection and diagnosis. Eng. Appl. Artif. Intell. 126:107095. 10.1016/j.engappai.2023.10709510.1016/j.engappai.2023.107095Rahman M., Anjum A., Milu M., Khanam F., Uddin M. S., Mollah M. N. (2021). Emotion recognition from EEG-based relative power spectral topography using convolutional neural network. Array 11:100072. 10.1016/j.array.2021.10007210.1016/j.array.2021.1000720Song Y., Zheng Q., Liu B., Gao X. (2023). Eeg conformer: convolutional transformer for EEG decoding and visualization. IEEE Trans. Neural Syst. Rehab. Eng. 31, 710–719. 10.1109/TNSRE.2022.323025010.1109/TNSRE.2022.323025037015413Tao W., Wang Z., Wong C. M., Jia Z., Li C., Chen X., et al. . (2024). ADFCNN: attention-based dual-scale fusion convolutional neural network for motor imagery brain-computer interface. IEEE Trans. Neural Syst. Rehab. Eng. 32, 154–165. 10.1109/TNSRE.2023.334233110.1109/TNSRE.2023.334233138090841Veeranki Y. R., Diaz L. R. M., Swaminathan R., Posada-Quintero H. F. (2024a). Nonlinear signal processing methods for automatic emotion recognition using electrodermal activity. IEEE Sens. J. 24, 8079–8093. 10.1109/JSEN.2024.335455310.1109/JSEN.2024.3354553Veeranki Y. R., Ganapathy N., Swaminathan R., Posada-Quintero H. (2024b). Comparison of electrodermal activity signal decomposition techniques for emotion recognition. IEEE Access 12, 19952–19966. 10.1109/ACCESS.2024.336183210.1109/ACCESS.2024.3361832Wang H., Zhao X., Zhao Y. (2022). Investigation of the effect of increased dimension levels in speech emotion recognition. IEEE Access 10, 78123–78134. 10.1109/ACCESS.2022.319403910.1109/ACCESS.2022.31940390Wang Z., Tong Y., Heng X. (2019). Phase-locking value based graph convolutional neural networks for emotion recognition. IEEE Access 7, 93711–93722. 10.1109/ACCESS.2019.292776810.1109/ACCESS.2019.29277680Wei C., Chen L., Song Z., Lou X., Li D. (2020). Eeg-based emotion recognition using simple recurrent units network and ensemble learning. Biomed. Signal Process. Control 58:101756. 10.1016/j.bspc.2019.10175610.1016/j.bspc.2019.1017560Wu Q., Dong C., Guo F., Wang L., Wu X., Wen C. (2024). Privacy-preserving federated learning for power transformer fault diagnosis with unbalanced data. IEEE Trans. Indust. Inform. 20, 5383–5394. 10.1109/TII.2023.333391410.1109/TII.2023.3333914Xiao G., Shi M., Ye M., Xu B., Chen Z., Ren Q. (2022). 4D attention-based neural network for EEG emotion recognition. Cogn. Neurodyn. 16, 1–14. 10.1007/s11571-021-09751-510.1007/s11571-021-09751-5PMC927954435847538Yan C., Chang X., Li Z., Guan W., Ge Z., Zhu L., et al. . (2022). ZeroNAS: differentiable generative adversarial networks search for zero-shot learning. IEEE Trans. Pattern Analy. Mach. Intellig. 44, 9733–9740. 10.1109/TPAMI.2021.312734610.1109/TPAMI.2021.312734634762584Zeng H., Wu Q., Jin Y., Zheng H., Li M., Zhao Y., et al. . (2022). Siam-GCAN: a siamese graph convolutional attention network for EEG emotion recognition. IEEE Trans. Instrum. Meas. 71, 1–9. 10.1109/TIM.2022.321682910.1109/TIM.2022.3216829Zhang Y., Xie Y., Kang L., Li K., Luo Y., Zhang Q. (2024). Feature-level fusion recognition of space targets with composite micromotion. IEEE Trans. Aerosp. Electron. Syst. 60, 934–951. 10.1109/TAES.2023.333133910.1109/TAES.2023.3331339Zheng W.-L., Liu W., Lu Y., Lu B.-L., Cichocki A. (2019). Emotionmeter: a multimodal framework for recognizing human emotions. IEEE Trans. Cybern. 49, 1110–1122. 10.1109/TCYB.2018.279717610.1109/TCYB.2018.279717629994384Zheng W.-L., Lu B.-L. (2015). Investigating critical frequency bands and channels for eeg-based emotion recognition with deep neural networks. IEEE Trans. Auton. Ment. Dev. 7, 162–175. 10.1109/TAMD.2015.243149710.1109/TAMD.2015.2431497Zong Y., Zuo Q., Ng M. K.-P., Lei B., Wang S. (2024). A new brain network construction paradigm for brain disorder via diffusion-based graph contrastive learning. IEEE Trans. Pattern Analy. Mach. Intellig. 46, 10389–10403. 10.1109/TPAMI.2024.344281110.1109/TPAMI.2024.344281139137077Zuo Q., Chen L., Shen Y., Ng M. K.-P., Lei B., Wang S. (2024a). BDHT: generative AI enables causality analysis for mild cognitive impairment. IEEE Trans. Automat. Sci. Eng. 10.1109/TASE.2024.342594910.1109/TASE.2024.34259490Zuo Q., Wu H., Chen C. L. P., Lei B., Wang S. (2024b). Prior-guided adversarial learning with hypergraph for predicting abnormal connections in Alzheimer's Disease. IEEE Trans. Cybernet. 54, 3652–3665. 10.1109/TCYB.2023.334464110.1109/TCYB.2023.334464138236677Zuo Q., Zhong N., Pan Y., Wu H., Lei B., Wang S. (2023). Brain structure-function fusing representation learning using adversarial decomposed-VAE for analyzing MCI. IEEE Trans. Neural Syst. Rehab. Eng. 31, 4017–4028. 10.1109/TNSRE.2023.332343210.1109/TNSRE.2023.332343237815971
3971587820241223
2397-33742024Dec23Nature human behaviourNat Hum BehavBehaviour-based dependency networks between places shape urban economic resilience.10.1038/s41562-024-02072-7Disruptions, such as closures of businesses during pandemics, not only affect businesses and amenities directly but also influence how people move, spreading the impact to other businesses and increasing the overall economic shock. However, it is unclear how much businesses depend on each other during disruptions. Leveraging human mobility data and same-day visits in five US cities, we quantify dependencies between points of interest encompassing businesses, stores and amenities. We find that dependency networks computed from human mobility exhibit significantly higher rates of long-distance connections and biases towards specific pairs of point-of-interest categories. We show that using behaviour-based dependency relationships improves the predictability of business resilience during shocks by around 40% compared with distance-based models, and that neglecting behaviour-based dependencies can lead to underestimation of the spatial cascades of disruptions. Our findings underscore the importance of measuring complex relationships in patterns of human mobility to foster urban economic resilience to shocks.© 2024. The Author(s).YabeTakahiroT0000-0001-8967-1967Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA. takahiroyabe@nyu.edu.Center for Urban Science and Progress (CUSP), Tandon School of Engineering, New York University, Brooklyn, NY, USA. takahiroyabe@nyu.edu.Department of Technology Management and Innovation, Tandon School of Engineering, New York University, Brooklyn, NY, USA. takahiroyabe@nyu.edu.García Bulle BuenoBernardoBInstitute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA.FrankMorgan RMR0000-0001-9487-9359Department of Informatics and Networked Systems, University of Pittsburgh, Pittsburgh, PA, USA.Digital Economy Lab, Institute for Human-Centered AI, Stanford University, Stanford, CA, USA.Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.PentlandAlexA0000-0002-8053-9983Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA.Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.MoroEstebanE0000-0003-2894-1024Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA. esteban.moroegido@gmail.com.Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA. esteban.moroegido@gmail.com.Network Science Institute, Department of Physics, Northeastern University, Boston, MA, USA. esteban.moroegido@gmail.com.eng2425021National Science Foundation (NSF)2218748National Science Foundation (NSF)2420945National Science Foundation (NSF)Journal Article20241223
EnglandNat Hum Behav1016977502397-3374IMCompeting interests: The authors declare no competing interests.
20231129202410222024122402520241224025202412232325aheadofprint3971587810.1038/s41562-024-02072-710.1038/s41562-024-02072-7Balland, P.-A. et al. Complex economic activities concentrate in large cities. Nat. Hum. Behav. 4, 248–254 (2020).10.1038/s41562-019-0803-331932688Pentland, A. Social Physics: How Good Ideas Spread—The Lessons from a New Science (Penguin, 2014).Vespignani, A. Modelling dynamical processes in complex socio-technical systems. Nat. Phys. 8, 32–39 (2012).10.1038/nphys2160Moro, E. et al. Universal resilience patterns in labor markets. Nat. Commun. 12, 1972 (2021).10.1038/s41467-021-22086-3337857348009945Inoue, H. & Todo, Y. Firm-level propagation of shocks through supply-chain networks. Nat. Sustain. 2, 841–847 (2019).10.1038/s41893-019-0351-xPichler, A. et al. Building an alliance to map global supply networks. Science 382, 270–272 (2023).10.1126/science.adi752137856603Yabe, T., Bueno, B. G. B., Dong, X., Pentland, A. & Moro, E. Behavioral changes during the COVID-19 pandemic decreased income diversity of urban encounters. Nat. Commun. 14, 2310 (2023).10.1038/s41467-023-37913-y3708549910120472Ouyang, M. & Duenas-Osorio, L. Time-dependent resilience assessment and improvement of urban infrastructure systems. Chaos J. Nonlinear Sci. 22, 033122 (2012).10.1063/1.4737204Elmqvist, T. et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2, 267–273 (2019).10.1038/s41893-019-0250-1Modica, M. & Reggiani, A. Spatial economic resilience: overview and perspectives. Network. Spat. Econ. 15, 211–233 (2015).10.1007/s11067-014-9261-7Hidalgo, C. A. Economic complexity theory and applications. Nat. Rev. Phys. 3, 92–113 (2021).10.1038/s42254-020-00275-1Rose, A. Defining and measuring economic resilience to disasters. Disaster Prev. Manage. Int. J. 13, 307–314 (2004).10.1108/09653560410556528Verschuur, J., Koks, E. & Hall, J. Ports’ criticality in international trade and global supply-chains. Nat. Commun. 13, 4351 (2022).10.1038/s41467-022-32070-0358965439327979Klimek, P., Poledna, S. & Thurner, S. Quantifying economic resilience from input–output susceptibility to improve predictions of economic growth and recovery. Nat. Commun. 10, 1677 (2019).10.1038/s41467-019-09357-w309759876459978Colon, C., Hallegatte, S. & Rozenberg, J. Criticality analysis of a country’s transport network via an agent-based supply chain model. Nat. Sustain. 4, 209–215 (2021).10.1038/s41893-020-00649-4Levermann, A. Climate economics: make supply chains climate-smart. Nature 506, 27–29 (2014).10.1038/506027a24499903Barrero, J. M., Bloom, N., & Davis, S. J. Why Working From Home Will Stick No. w28731 https://www.nber.org/papers/w28731 (National Bureau of Economic Research, 2021).Lucchini, L. et al. Living in a pandemic: changes in mobility routines, social activity and adherence to COVID-19 protective measures. Sci. Rep. 11, 1–12 (2021).10.1038/s41598-021-04139-1I’ll be latte to the office. Bank of America Institute https://business.bofa.com/content/dam/flagship/bank-of-america-institute/economic-insights/i-will-be-latte-to-the-office-july-2022.pdf (2022).Salon, D. et al. The potential stickiness of pandemic-induced behavior changes in the united states. Proc. Natl Acad. Sci. USA 118, e2106499118 (2021).10.1073/pnas.2106499118341403498271792Zhai, W. & Yue, H. Economic resilience during COVID-19: an insight from permanent business closures. Environ. Plan. A 54, 219–221 (2022).10.1177/0308518X211055181Becker, G. S. A theory of the allocation of time. Econ. J. 75, 493–517 (1965).10.2307/2228949Baltas, G., Argouslidis, P. C. & Skarmeas, D. The role of customer factors in multiple store patronage: a cost–benefit approach. J. Retail. 86, 37–50 (2010).10.1016/j.jretai.2010.01.005Maruyama, M. & Wu, L. Multiple store patronage: the effects of store characteristics. J. Retail. Consum. Serv. 21, 601–609 (2014).10.1016/j.jretconser.2014.04.009Seock, Y.-K. Influence of retail store environmental cues on consumer patronage behavior across different retail store formats: an empirical analysis of us hispanic consumers. J. Retail. Consum. Serv. 16, 329–339 (2009).10.1016/j.jretconser.2009.03.001Uncles, M. D. & Kwok, S. Generalizing patterns of store-type patronage: an analysis across major chinese cities. The Int. Rev. Retail Distrib. Consum. Res. 18, 473–493 (2008).Hidalgo, C. A., Castañer, E. & Sevtsuk, A. The amenity mix of urban neighborhoods. Habitat Int. 106, 102205 (2020).10.1016/j.habitatint.2020.102205Bahrami, M., Xu, Y., Tweed, M. & Bozkaya, B. et al. Using gravity model to make store closing decisions: a data driven approach. Expert Sys. Appl. 205, 117703 (2022).10.1016/j.eswa.2022.117703Sevtsuk, A. Street Commerce: Creating Vibrant Urban Sidewalks (Univ. Pennsylvania Press, 2020).Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A. -L. Understanding individual human mobility patterns. Nature 453, 779 (2008).10.1038/nature0695818528393Blondel, V. D., Decuyper, A. & Krings, G. A survey of results on mobile phone datasets analysis. EPJ Data Sci. 4, 10 (2015).10.1140/epjds/s13688-015-0046-0Moro, E., Calacci, D., Dong, X. & Pentland, A. Mobility patterns are associated with experienced income segregation in large us cities. Nat. Commun. 12, 1–10 (2021).10.1038/s41467-021-24899-8Chang, S. et al. Mobility network models of COVID-19 explain inequities and inform reopening. Nature 589, 82–87 (2021).10.1038/s41586-020-2923-333171481Yabe, T., Rao, P. S. C., Ukkusuri, S. V. & Cutter, S. L. Toward data-driven, dynamical complex systems approaches to disaster resilience. Proc. Natl Acad. Sci. USA 119, e2111997119 (2022).10.1073/pnas.2111997119351358918872719Yabe, T., Zhang, Y. & Ukkusuri, S. V. Quantifying the economic impact of disasters on businesses using human mobility data: a bayesian causal inference approach. EPJ Data Sci. 9, 36 (2020).10.1140/epjds/s13688-020-00255-6Podesta, C., Coleman, N., Esmalian, A., Yuan, F. & Mostafavi, A. Quantifying community resilience based on fluctuations in visits to points-of-interest derived from digital trace data. J. R. Soc. Interface 18, 20210158 (2021).10.1098/rsif.2021.0158339063888086905Di Clemente, R. et al. Sequences of purchases in credit card data reveal lifestyles in urban populations. Nat. Commun. 9, 1–8 (2018).10.1038/s41467-018-05690-8Yang, Y., Pentland, A. & Moro, E. Identifying latent activity behaviors and lifestyles using mobility data to describe urban dynamics. EPJ Data Sci. 12, 15 (2023).10.1140/epjds/s13688-023-00390-w3722062910193357Tobler, W. R. A computer movie simulating urban growth in the detroit region. Econ. Geogr. 46, 234–240 (1970).10.2307/143141Leontief, W. Input–Output Economics (Oxford Univ. Press, 1986).Schwartz, H. L. et al. Remote Learning is Here to Stay. Results From the First American School District Panel Survey (RAND Corporation, 2020).Bonner, E. R. The economic impact of a university on its local community. J. Am. Inst. Planners 34, 339–343 (1968).10.1080/01944366808977555Hansen, S., Lambert, P. J., Bloom, N., Davis, S. J., Sadun, R., & Taska, B. Remote Work Across Jobs, Companies, and Space. No. w31007 https://www.nber.org/papers/w31007 (National Bureau of Economic Research, 2023).Schwartz, A. How the Red Cross used tweets to save lives during Hurricane Sandy. Fast Company https://www.fastcompany.com/3020923/how-the-red-cross-used-tweets-to-save-lives-during-hurricane-sandy (2013).Gauvin, L. et al. Gender gaps in urban mobility. Hum. Soc. Sci. Commun. 7, 1–13 (2020).Wang, Q., Phillips, N. E., Small, M. L. & Sampson, R. J. Urban mobility and neighborhood isolation in America’s 50 largest cities. Proc. Natl Acad. Sci. USA 115, 7735–7740 (2018).10.1073/pnas.1802537115299870196065036Xue, J. et al. Quantifying the spatial homogeneity of urban road networks via graph neural networks. Nat. Mach. Intell. 4, 246–257 (2022).10.1038/s42256-022-00462-yTiger data products guide. United States Census Bureau https://www.census.gov/programs-surveys/geography/guidance/tiger-data-products-guide.html (2024).
3971527120241223
1935-273518122024Dec23PLoS neglected tropical diseasesPLoS Negl Trop DisAfrican schistosomes in small mammal communities: Perspectives from a spatio-temporal survey in the vicinity of Lake Guiers, Senegal.e0012721e001272110.1371/journal.pntd.0012721Schistosomiasis is a neglected tropical disease of public health significance. In view of its elimination as a public health problem by 2030, adopting a One Health approach is necessary, considering its multidimensional nature. Animal reservoirs, in particular, pose a significant threat to schistosomiasis control in Africa and beyond. In this study, we conducted a spatio-temporal survey of Schistosoma infections in small mammal communities and intermediate snail hosts in the vicinity of Lake Guiers in northern Senegal. Sampling campaigns were undertaken four times between April 2021 and August 2022 around eight villages. A total of 534 small mammals of four species, primarily Hubert's multimammate mice Mastomys huberti, were captured. Out of 498 individuals examined, only 18 rodents (17 M. huberti and 1 Arvicanthis niloticus) were infected with schistosomes. The infection rates in M. huberti varied over time (prevalence range: 2.4% to 9.3%, intensity range: 4 to 132), and space (prevalence range: 3.1% to 40%, intensity range: 2 to 110) and were higher in adult hosts captured during or just after the rainy season, a time when older individuals dominate in rodent populations. Using a multi-locus molecular approach (cox1 and ITS) on Schistosoma larvae (cercariae and miracidia) and adult worms, we identified Schistosoma mansoni as the most widespread species. We also detected Schistosoma bovis and Schistosoma haematobium in M. huberti from one locality (Temeye). Although no Schistosoma hybrids were found, the discovery of a male S. mansoni and a female S. bovis pair raises concerns about potential hybridization patterns that could occur in rodents. Finally, three snail species were found infected (25 Biomphalaria pfeifferi, 3 Bulinus truncatus and 1 Bulinus senegalensis) including with S. mansoni, S. bovis, S. haematobium and S. haematobium x S. bovis hybrids. Our findings highlight the spatial-temporal variations of Schistosoma infections in rodents and emphasize the need for fine-scale monitoring over time and space for effective One Health measures and ensuring the sustainability of schistosomiasis control efforts.Copyright: © 2024 Kincaid-Smith et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Kincaid-SmithJulienJ0000-0002-7471-1724CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France.SavassiBoris Sègnito A EBSAECentre de Recherche pour la lutte contre les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d'Abomey-Calavi, Abomey-Calavi, Bénin.IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.SenghorBrunoBVITROME, Campus International IRD-UCAD de Hann, Dakar, Sénégal.DiagneChristopheCCBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France.NiangYoussouphaYCBGP-BIOPASS 2, IRD, Campus IRD-ISRA de Bel-Air, Dakar, Sénégal.KaneMamadouMCBGP-BIOPASS 2, IRD, Campus IRD-ISRA de Bel-Air, Dakar, Sénégal.TatardCarolineCCBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France.BrouatCarineCCBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France.GranjonLaurentLCBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France.engJournal Article20241223
United StatesPLoS Negl Trop Dis1012914881935-2727IMThe authors have declared that no competing interests exist.
20245312024112520241223225920241223225920241223144aheadofprint3971527110.1371/journal.pntd.0012721PNTD-D-24-00765
trying2...
Disentangling the neuroanatomical correlates of perseveration from unilateral spatial neglect. | LitMetric

Perseverative behavior, manifest as re-cancelling or re-visiting targets, is distinct from spatial neglect. Perseveration is thought to reflect frontal or parietal lobe dysfunction, but the neuroanatomical correlates remain poorly defined and the interplay between neglect and perseveration is incompletely understood. We enrolled 87 consecutive patients with diffusion-weighted, perfusion-weighted imaging, and spatial neglect testing within 24 hours of right hemisphere ischemic stroke. The degrees of spatial neglect and perseveration were analyzed. Perseveration was apparent in 46% (40/87) of the patients; 28% (24/87) showed perseveration only; 18% (16/87) showed both perseveration and neglect; and 3% (3/87) showed neglect only. Perseverative behaviors occur in an inverted "U" shape: little neglect was associated with few perseverations; moderate neglect with high perseverations; and in severe neglect targets may not enter consciousness and perseverative responses decrease. Brodmann areas of dysfunction, and the caudate and putament, were assessed and volumetrically measured. In this study, the caudate and putamen were not associated with perseveration. After controlling for neglect, and volume of dysfunctional tissue, only Brodmann area 46 was associated with perseveration. Our results further support the notion that perseveration and neglect are distinct entities; while they often co-occur, acute dorsolateral prefrontal cortex ischemia is associated with perseveration specifically.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459288PMC
http://dx.doi.org/10.3233/BEN-2012-110235DOI Listing

Publication Analysis

Top Keywords

spatial neglect
16
neglect
12
neglect perseveration
12
associated perseveration
12
perseveration
11
neuroanatomical correlates
8
neglect perseverative
8
perseveration neglect
8
disentangling neuroanatomical
4
correlates perseveration
4

Similar Publications

Label-Free SERS Analysis of Biological and Physical Information Heterogeneity of Nanoscale Extracellular Vesicle by Matching Specific Sizes of Enhanced Particles.

Small

December 2024

Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.

The heterogeneity of extracellular vesicles (EVs) surface information represents different functions, which is neglected in previous studies. In this study, a label-free SERS analysis approach is demonstrated to study fundamental EV biological and physical information heterogeneity by matching specific sizes of nano-enhanced particles. This strategy reveals informative, comprehensive, and high-quality SERS spectra of the overall exosome surface, and effectively circumvents the key information loss caused by the spatial resistance of NPs binding to the 293 exosomes' concave structure.

View Article and Find Full Text PDF

Background: Brazil has the second highest case count of Hansen's disease (leprosy, HD), but factors contributing to transmission in highly endemic areas of the country remain unclear. Recent studies have shown associations of helminth infection and leprosy, supporting a biological plausibility for increased leprosy transmission in areas with helminths. However, spatial analyses of the overlap of these infections are limited.

View Article and Find Full Text PDF

Introduction: Emotion recognition using electroencephalography (EEG) is a key aspect of brain-computer interface research. Achieving precision requires effectively extracting and integrating both spatial and temporal features. However, many studies focus on a single dimension, neglecting the interplay and complementarity of multi-feature information, and the importance of fully integrating spatial and temporal dynamics to enhance performance.

View Article and Find Full Text PDF

Disruptions, such as closures of businesses during pandemics, not only affect businesses and amenities directly but also influence how people move, spreading the impact to other businesses and increasing the overall economic shock. However, it is unclear how much businesses depend on each other during disruptions. Leveraging human mobility data and same-day visits in five US cities, we quantify dependencies between points of interest encompassing businesses, stores and amenities.

View Article and Find Full Text PDF

Schistosomiasis is a neglected tropical disease of public health significance. In view of its elimination as a public health problem by 2030, adopting a One Health approach is necessary, considering its multidimensional nature. Animal reservoirs, in particular, pose a significant threat to schistosomiasis control in Africa and beyond.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!