trying...
22713393 2013 05 13 2021 10 21 1875-8584 26 1-2 2013 Behavioural neurology Behav Neurol Disentangling the neuroanatomical correlates of perseveration from unilateral spatial neglect. 131 138 131-8 10.3233/BEN-2012-110235 Perseverative behavior, manifest as re-cancelling or re-visiting targets, is distinct from spatial neglect. Perseveration is thought to reflect frontal or parietal lobe dysfunction, but the neuroanatomical correlates remain poorly defined and the interplay between neglect and perseveration is incompletely understood. We enrolled 87 consecutive patients with diffusion-weighted, perfusion-weighted imaging, and spatial neglect testing within 24 hours of right hemisphere ischemic stroke. The degrees of spatial neglect and perseveration were analyzed. Perseveration was apparent in 46% (40/87) of the patients; 28% (24/87) showed perseveration only; 18% (16/87) showed both perseveration and neglect; and 3% (3/87) showed neglect only. Perseverative behaviors occur in an inverted "U" shape: little neglect was associated with few perseverations; moderate neglect with high perseverations; and in severe neglect targets may not enter consciousness and perseverative responses decrease. Brodmann areas of dysfunction, and the caudate and putament, were assessed and volumetrically measured. In this study, the caudate and putamen were not associated with perseveration. After controlling for neglect, and volume of dysfunctional tissue, only Brodmann area 46 was associated with perseveration. Our results further support the notion that perseveration and neglect are distinct entities; while they often co-occur, acute dorsolateral prefrontal cortex ischemia is associated with perseveration specifically. Kleinman Jonathan T JT Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. DuBois Jeffery C JC Newhart Melissa M Hillis Argye E AE eng R01 NS047691 NS NINDS NIH HHS United States R01 NS047691-08 NS NINDS NIH HHS United States R01NS47691 NS NINDS NIH HHS United States Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Netherlands Behav Neurol 8914585 0953-4180 IM Adult Aged Aged, 80 and over Caudate Nucleus pathology Cerebral Cortex pathology Diffusion Magnetic Resonance Imaging methods Female Humans Magnetic Resonance Angiography methods Male Middle Aged Neuroimaging methods Perceptual Disorders complications pathology Psychomotor Performance Putamen pathology Stereotypic Movement Disorder complications pathology Stroke complications pathology 2012 6 21 6 0 2012 6 21 6 0 2013 5 15 6 0 2013 1 1 ppublish 22713393 NIHMS366489 PMC3459288 10.3233/BEN-2012-110235 9U36225842633760 J Cogn Neurosci. 2009 Nov;21(11):2073-84 19016599 Cortex. 2009 Mar;45(3):300-12 18708187 Brain. 2010 Mar;133(Pt 3):880-94 20028714 Neuropsychologia. 2010 Jul;48(9):2758-63 20433859 Stroke. 2010 Dec;41(12):2817-21 21030699 Neurology. 2001 Mar 13;56(5):670-2 11245724 Neuropsychologia. 2002;40(6):594-604 11792401 Neuropsychologia. 2002;40(11):1794-803 12062891 Brain Cogn. 2003 Nov;53(2):117-20 14607129 Neurology. 2004 Aug 10;63(3):468-74 15304577 Brain. 1967 Jun;90(2):429-48 6028255 Neurology. 1973 Jun;23(6):658-64 4736313 Neuropsychologia. 1971 Dec;9(4):451-8 5164380 Neuropsychologia. 1980;18(2):123-32 7383304 J Neurosci. 1984 Jul;4(7):1863-74 6737043 J Clin Exp Neuropsychol. 1986 Dec;8(6):710-26 3782451 Neurology. 1987 Nov;37(11):1736-41 3670611 Cortex. 1989 Jun;25(2):231-7 2758849 J Neurol Neurosurg Psychiatry. 1990 Jun;53(6):487-91 2380729 Cortex. 1990 Sep;26(3):307-17 2249435 J Neurol Neurosurg Psychiatry. 1992 Jun;55(6):431-6 1619406 Brain. 1998 Sep;121 ( Pt 9):1759-70 9762963 Neurology. 1999 May 12;52(8):1569-76 10331680 Brain. 1965 Mar;88:1-10 14280275 J Neurosci. 2005 Mar 23;25(12):3161-7 15788773 J Cogn Neurosci. 2005 Feb;17(2):340-54 15811244 Brain. 2006 Aug;129(Pt 8):2148-57 16870885 J Neurosci. 2006 Aug 2;26(31):8069-73 16885220 Cortex. 2006 Aug;42(6):911-20 17131597 Brain Res. 2006 Nov 6;1118(1):106-15 16979143 Brain Cogn. 2007 Jun;64(1):50-9 17174459 Brain Cogn. 2008 Oct;68(1):49-52 18406504 Neurology. 2008 Oct 28;71(18):1439-44 18955687 Cogn Behav Neurol. 2008 Dec;21(4):249-53 19057176 Cortex. 2009 Mar;45(3):293-9 18708186 Neurocase. 2009 Aug;15(4):311-7 19370480 trying2... trying...
5013 5 0 1 MCID_676f085c2bf57d487f0c91b3
39726305
39724139
39720230
39715878
39715271
spatial "spatial"[All Fields] OR "spatialization"[All Fields] OR "spatializations"[All Fields] OR "spatialized"[All Fields] OR "spatially"[All Fields] neglect "neglect"[All Fields] OR "neglected"[All Fields] OR "neglectful"[All Fields] OR "neglecting"[All Fields] OR "neglects"[All Fields] ("spatial"[All Fields] OR "spatialization"[All Fields] OR "spatializations"[All Fields] OR "spatialized"[All Fields] OR "spatially"[All Fields]) AND ("neglect"[All Fields] OR "neglected"[All Fields] OR "neglectful"[All Fields] OR "neglecting"[All Fields] OR "neglects"[All Fields])
trying2... trying...
39726305 2024 12 27 1613-6829 2024 Dec 26 Small (Weinheim an der Bergstrasse, Germany) Small Label-Free SERS Analysis of Biological and Physical Information Heterogeneity of Nanoscale Extracellular Vesicle by Matching Specific Sizes of Enhanced Particles. e2409806 e2409806 10.1002/smll.202409806 The heterogeneity of extracellular vesicles (EVs) surface information represents different functions, which is neglected in previous studies. In this study, a label-free SERS analysis approach is demonstrated to study fundamental EV biological and physical information heterogeneity by matching specific sizes of nano-enhanced particles. This strategy reveals informative, comprehensive, and high-quality SERS spectra of the overall exosome surface, and effectively circumvents the key information loss caused by the spatial resistance of NPs binding to the 293 exosomes' concave structure. The classification of normal and cancerous cell-derived exosomes by PCA method, the accuracy is improved from 91.2% to 95.1% by optimizing sizes of nano-enhanced particles. In addition, stem cell-derived EVs of diverse sizes and morphologies similarly show acuity of spectrum variation to NPs size, which is conductive to qualitative studies. This new strategy will offer a widened in-depth understanding of the surface information, size, and morphology of EVs, which can be applied to the study of biological functions. © 2024 Wiley‐VCH GmbH. Zhang Ruiyuan R Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China. Guo Yu Y Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China. Huang Chen C Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China. Fang Jixiang J 0000-0003-3618-2144 Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China. eng 21874104 National Natural Science Foundation of China 22074115 National Natural Science Foundation of China 22474106 National Natural Science Foundation of China xtr062022002 Fundamental Research Funds for the Central Universities 2024SF-GJHX-36 Shaanxi Province Key Core Technology project Journal Article 2024 12 26 Germany Small 101235338 1613-6810 IM biological and physical information enhanced particles extracellular vesicle heterogeneity label‐free SERS analysis 2024 12 2 2024 10 21 2024 12 27 6 20 2024 12 27 6 20 2024 12 27 3 2 aheadofprint 39726305 10.1002/smll.202409806 G. Raposo, W. Stoorvogel, J. Cell Biol. 2013, 200, 373. M. Colombo, G. Raposo, C. Thery, Annu. Rev. Cell Biol. 2014, 30, 255. C. Théry, L. Zitvogel, S. Amigorena, Nat. Rev. Immunol. 2002, 2, 569. R. Crescitelli, C. Lasser, T. G. Szabo, A. Kittel, M. Eldh, I. Dianzani, E. I. Buzas, J. O. Lötvall, J. Extracell. Vesicles 2013, 2, 20677. H. Valadi, K. Ekstrom, A. Bossios, M. Sjöstrand, J. J. Lee, J. O. Lötvall, Nat. Cell Biol. 2007, 9, 654. D. W. Greening, S. K. Gopal, R. A. Mathias, L. Liu, J. Y. Sheng, H. J. Zhu, R. J. Simpson, Semin. Cell Dev. Biol. 2015, 40, 60. Z. Y. Abd Elmageed, Y. J. Yang, R. J. Thomas, M. Ranjan, D. Mondal, K. Moroz, Z. D. Fang, B. M. Rezk, K. Moparty, S. C. Sikka, O. Sartor, A. B. Abdel‐Mageed, Stem Cells 2014, 32, 983. B. H. Sung, T. Ketova, D. Hoshino, A. Zijlstra, A. M. Weaver, Nat. Commun. 2015, 6, 7164. K. Al‐Nedawi, B. Meehan, J. Micallef, V. Lhotak, L. May, A. Guha, J. Rak, Nat. Cell Biol. 2008, 10, 619. E. An astasiadou, F. J. Slack, Science 2014, 346, 619. L. Zhao, W. Liu, J. Xiao, B. Cao, Cancer Lett. 2015, 356, 339. W. R. Algar, D. E. Prasuhn, M. H. Stewart, T. L. Jennings, J. B. Blanco‐Canosa, P. E. Dawson, I. L. Medintz, Bioconjugate Chem. 2011, 22, 825. E. Warner, D. B. Plewes, K. A. Hill, P. A. Causer, J. T. Zubovits, R. A. Jong, M. R. Cutrara, G. DeBoer, M. J. Yaffe, S. J. Messner, W. S. Meschino, C. A. Piron, S. A. Narod, J. Am. Med. Assoc. 2004, 292, 1317. C. C. Liu, X. N. Xu, B. Li, B. Situ, W. L. Pan, Y. Hu, T. X. An, S. H. Yao, L. Zheng, Nano Lett. 2018, 18, 4226. P. Ziaei, E. Berkman, M. G. Norton, ACS Appl. Nano Mater. 2018, 1, 2004. W. S. Wang, J. Luo, S. T. Wang, Adv. Healthcare Mater. 2018, 7, 1800484. R. E. Lane, D. Korbie, M. M. Hill, M. Trau, Clin. Transl. Med. 2018, 7, 14. A. Y. Wu, K. Ueda, C. P. Lai, Proteomics 2019, 19, 1800162. T. Yamashita, H. Kamada, S. Kanasaki, Y. Maeda, K. Nagano, Y. Abe, M. Inoue, Y. Yoshioka, Y. Tsutsumi, S. Katayama, M. Inoue, S. Tsunoda, Pharmazie 2013, 68, 969. S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, Z. Q. Tian, Nat. Rev. Mater. 2016, 1, 16021. L. Tirinato, F. Gentile, D. Di Mascolo, M. L. Coluccio, G. Das, C. Liberale, S. A. Pullano, G. Perozziello, M. Francardi, A. Accardo, F. De Angelis, P. Candeloro, E. Di Fabrizio, Microelectron. Eng. 2012, 97, 337. S. Dong, Y. Wang, Z. Liu, W. Zhang, K. Yi, X. Zhang, X. Zhang, C. Jiang, S. Yang, F. Wang, X. Xiao, ACS Appl. Mater. Interfaces 2020, 12, 5136. C. Krafft, E. B. Osei, J. Popp, I. Nazarenko, Proc. SPIE 11236, Biomedical Vibrational Spectroscopy 2020: Advances in Research and Industry, San Francisco, California, United States, February 2020. L. Guerrini, E. Garcia‐Rico, A. O'Loghlen, V. Giannini, R. A. Alvarez‐Puebla, Cancers 2021, 13, 2179. H. Shin, S. Oh, S. Hong, M. Kang, D. Kang, Y. G. Ji, B. H. Choi, K. W. Kang, H. Jeong, Y. Park, H. K. Kim, Y. Choi, ACS Nano 2020, 14, 5435. S. Stremersch, M. Marro, B.‐E. Pinchasik, P. Baatsen, A. Hendrix, S. C. D e Smedt, P. Loza‐Alvarez, A. G. Skirtach, K. Raemdonck, K. Braeckmans, SmallSmall 2016, 12, 3292. E. C. Le Ru, P. G. Etchegoin, Annu. Rev. Phys. Chem. 2012, 63, 65. L. L. Zhang, Y. Guo, R. Hao, Y. F. Shi, H. J. You, H. Nan, Y. Z. Dai, D. J. Liu, D. Y. Lei, J. X. Fang, Nat. Commun. 2021, 12, 6849. L. F. Han, C. C. Zhu, Z. Tan, J. Wang, X. W. Liao, X. H. Xia, C. Wang, Chem. Commun. 2023, 59, 7967. H. Shin, H. Jeong, J. Park, S. Hong, Y. Choi, ACS Sens. 2018, 3, 2637. E. A. Kwizera, R. O'Con nor, V. Vinduska, M. Williams, E. R. Butch, S. E. Snyder, X. Chen, X. Huang, Theranostics 2018, 8, 2722. I. Tatischeff, E. Larquet, J. M. Falcon‐perez, P. Turpin, S. G. Kruglik, J. Extracell. Vesicles 2012, 1, 19179. C. K. Kuhl, S. Schrading, C. C. Leutner, N. Morakkabati‐Spitz, E. Wardelmann, R. Fimmers, W. Kuhn, H. H. Schild, J. Clin. Oncol. 2005, 23, 8469. C. Lee, R. P. Carney, S. Hazari, Z. J. Smith, A. Knudson, C. S. Robertson, K. S. Lam, S. Wachsmann‐Hogiu, Nanoscale 2015, 7, 9290. F. Lavialle, S. Deshayes, F. Gonnet, E. Larquet, S. G. Kruglik, N. Boisset, R. Daniel, A. Alfsen, I. Tatischeff, Int. J. Pharm. 2009, 380, 206. L. T. Kerr, L. Gubbins, K. W. Gorzel, S. Sharma, M. Kell, A. M. Cann, B. M. Hennelly, in Proc. SPIE Vol. 9129, Jurgen Popp; Valery V Tuchin; Dennis L Matthews, 2014, 91292Q. F. S. Manciu, J. D. Ciubuc, K. Parra, M. Manciu, K. E. Bennet, P. Valenzuela, E. M. Sundin, W. G. Durrer, L. Reza, G. Francia, Technol. Cancer Res. Treat. 2017, 16, 461. C. Kallaway, L. M. Almond, H. Barr, J. Wood, J. Hutchings, C. Kendall, N. Stone, Photodiagn. Photodyn. Ther. 2013, 10, 207. G. Shetty, C. Kendall, N. Shepherd, N. Stone, H. Barr, Br. J. Cancer 2006, 94, 1460. K. A. Willets, Anal. Bioanal. Chem. 2009, 394, 85. H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, H. Lee, Nat. Biotechnol. 2014, 32, 490. T. S. Martins, D. Trindade, M. Vaz, I. Campelo, M. Almeida, G. Trigo, O. A. da Cruz e Silva, A. G. J. Henriques, J. Neurochem. 2021, 156, 162. K. M. Kanninen, N. Bister, J. Koistinaho, T. Malm, Biochim. Biophys. Acta 2016, 1862, 403. N. G. Bastús, J. Comenge, V. Puntes, Langmuir 2011, 27, 11098. J. C. Fraire, S. Stremersch, D. Bouckaert, T. Monteyne, T. D. Beer, P. Wuytens, R. D. Rycke, A. G. Skirtach, K. Raemdonck, S. D. Smedt, K. Braeckmans, ACS Appl. Mater. Interfaces 2019, 11, 39424. J. Lim, J. Nam, S. Yang, H. Shin, Y. Jang, G. Bae, T. Kang, K. Lim, Y. Choi, Anal. Chem. 2015, 87, 11652. K.‐W. Kang, H. Kim, W. Hur, J.‐h. Jung, S. J. Jeong, H. Shin, D. Seo, H. Jeong, B. Choi, S. Hong, H. K. Kim, Y. Choi, J. Park, K. Y. Lee, K. P. Kim, Y. Park, Mol. Cell. Proteomics 2021, 20, 100017. B. D. Chan, W. Y. Wong, M. M. L. Lee, W. C. S. Cho, B. K. Yee, Y. W. Kwan, W. C. S. Tai, Proteomics 2019, 19, 1800149. 39724139 2024 12 26 1935-2735 18 12 2024 Dec 26 PLoS neglected tropical diseases PLoS Negl Trop Dis Spatial associations of Hansen's disease and schistosomiasis in endemic regions of Minas Gerais, Brazil. e0012682 e0012682 10.1371/journal.pntd.0012682 Brazil has the second highest case count of Hansen's disease (leprosy, HD), but factors contributing to transmission in highly endemic areas of the country remain unclear. Recent studies have shown associations of helminth infection and leprosy, supporting a biological plausibility for increased leprosy transmission in areas with helminths. However, spatial analyses of the overlap of these infections are limited. Therefore, we aimed to spatially analyze these two diseases in a co-endemic area of Minas Gerais, Brazil, in order to identify potential epidemiologic associations. An ecological study using public health surveillance records and census data was conducted to investigate whether the occurrence of HD -and specifically multibacillary (MB) disease- was associated with the presence of schistosomiasis in a community of 41 municipalities in eastern Minas Gerais, Brazil from 2011 to 2015. Multivariate logistic regression and spatial cluster analyses using geographic information systems (GIS) were performed. The average annual incidence of HD in the study area was 35.3 per 100,000 while Schistosoma mansoni average annual incidence was 26 per 100,000. Both HD and schistosomiasis were spatially distributed showing significant clustering across the study area. Schistosomiasis was present in 10.4% of the tracts with HD and thirteen high-high clusters of local bivariate autocorrelation for HD and schistosomiasis cases were identified. A multivariate non-spatial analysis found that census tracts with MB disease were more likely to have schistosomiasis when adjusted for population density, household density, and household income (aOR = 1.7, 95% CI 1.0, 2.7). This remained significant when accounting for spatial correlation (aOR = 1.1, 95% CI (1.0, 1.2)). We found clustering of both HD and schistosomiasis in this area with some statistically significant overlap of multibacillary HD with S. mansoni infection. Not only did we provide an effective approach to study the epidemiology of two endemic neglected tropical diseases with geographic spatial analyses, we highlight the need for further clinical and translational studies to study the potential epidemiologic associations uncovered. Copyright: © 2024 Stephens et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Stephens Jessica L JL Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America. Fraga Lucia A O LAO Universidade Federal Juiz de Fora-Campus Governador Valadares, Governador Valadares, Minas Gerais, Brazil. Universidade Vale do Rio Doce, Governador Valadares, Minas Gerais, Brazil. Ferreira José A JA Faculdade da Saúde e Ecologia Humana (FASEH), Vespasiano, Minas Gerais, Brazil. De Mondesert Laura L Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America. Kitron Uriel U Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America. Clennon Julie A JA Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America. Fairley Jessica K JK 0000-0003-4086-9272 Universidade Vale do Rio Doce, Governador Valadares, Minas Gerais, Brazil. Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America. eng Journal Article 2024 12 26 United States PLoS Negl Trop Dis 101291488 1935-2727 IM The authors have declared that no competing interests exist. 2024 3 25 2024 11 6 2024 12 26 18 16 2024 12 26 18 16 2024 12 26 15 52 aheadofprint 39724139 10.1371/journal.pntd.0012682 PNTD-D-24-00445 39720230 2024 12 25 1662-4548 18 2024 Frontiers in neuroscience Front Neurosci STAFNet: an adaptive multi-feature learning network via spatiotemporal fusion for EEG-based emotion recognition. 1519970 1519970 1519970 10.3389/fnins.2024.1519970 Emotion recognition using electroencephalography (EEG) is a key aspect of brain-computer interface research. Achieving precision requires effectively extracting and integrating both spatial and temporal features. However, many studies focus on a single dimension, neglecting the interplay and complementarity of multi-feature information, and the importance of fully integrating spatial and temporal dynamics to enhance performance. We propose the Spatiotemporal Adaptive Fusion Network (STAFNet), a novel framework combining adaptive graph convolution and temporal transformers to enhance the accuracy and robustness of EEG-based emotion recognition. The model includes an adaptive graph convolutional module to capture brain connectivity patterns through spatial dynamic evolution and a multi-structured transformer fusion module to integrate latent correlations between spatial and temporal features for emotion classification. Extensive experiments were conducted on the SEED and SEED-IV datasets to evaluate the performance of STAFNet. The model achieved accuracies of 97.89% and 93.64%, respectively, outperforming state-of-the-art methods. Interpretability analyses, including confusion matrices and t-SNE visualizations, were employed to examine the influence of different emotions on the model's recognition performance. Furthermore, an investigation of varying GCN layer depths demonstrated that STAFNet effectively mitigates the over-smoothing issue in deeper GCN architectures. In summary, the findings validate the effectiveness of STAFNet in EEG-based emotion recognition. The results emphasize the critical role of spatiotemporal feature extraction and introduce an innovative framework for feature fusion, advancing the state of the art in emotion recognition. Copyright © 2024 Hu, He, Qian, Liu, Qiao, Zhang and Xiong. Hu Fo F College of Information Engineering, Zhejiang University of Technology, Hangzhou, China. He Kailun K College of Information Engineering, Zhejiang University of Technology, Hangzhou, China. Qian Mengyuan M College of Information Engineering, Zhejiang University of Technology, Hangzhou, China. Liu Xiaofeng X College of Information Engineering, Zhejiang University of Technology, Hangzhou, China. Qiao Zukang Z Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China. Zhang Lekai L The School of Design and Architecture, Zhejiang University of Technology, Hangzhou, China. Xiong Junlong J Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China. eng Journal Article 2024 12 10 Switzerland Front Neurosci 101478481 1662-453X EEG adaptive adjacency matrix deep learning emotion recognition spatiotemporal fusion The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. 2024 10 30 2024 11 18 2024 12 25 6 21 2024 12 25 6 20 2024 12 25 4 20 2024 1 1 epublish 39720230 PMC11666491 10.3389/fnins.2024.1519970 Algarni M., Saeed F., Al-Hadhrami T., Ghabban D., Al-Sarem M. (2022). Deep learning-based approach for emotion recognition using electroencephalography (EEG) signals using bi-directional long short-term memory (BI-LSTM). Sensors 22:2976. 10.3390/s22082976 10.3390/s22082976 PMC9033053 35458962 Bagherzadeh S., Maghooli K., Shalbaf A., Maghsoudi A. (2022). Emotion recognition using effective connectivity and pre-trained convolutional neural networks in EEG signals. Cogn. Neurodyn. 16, 1–20. 10.1007/s11571-021-09756-0 10.1007/s11571-021-09756-0 PMC9508317 36237402 Bao G., Yang K., Tong L., Shu J., Zhang R., Wang L., et al. . (2022). Linking multi-layer dynamical gcn with style-based recalibration cnn for EEG-based emotion recognition. Front. Neurorobot. 16:834952. 10.3389/fnbot.2022.834952 10.3389/fnbot.2022.834952 PMC8907537 35280845 Berboth S., Morawetz C. (2021). Amygdala-prefrontal connectivity during emotion regulation: a meta-analysis of psychophysiological interactions. Neuropsychologia 153:107767. 10.1016/j.neuropsychologia.2021.107767 10.1016/j.neuropsychologia.2021.107767 33516732 Chang X., Ren P., Xu P., Li Z., Chen X., Hauptmann A. (2023). A comprehensive survey of scene graphs: Generation and application. IEEE Trans. Pattern Anal. Mach. Intell. 45, 1–26. 10.1109/TPAMI.2021.3137605 10.1109/TPAMI.2021.3137605 34941499 Chen B., Cao Q., Hou M., Zhang Z., Lu G., Zhang D. (2021). Multimodal emotion recognition with temporal and semantic consistency. IEEE/ACM Trans. Audio Speech Lang. Proc. 29, 3592–3603. 10.1109/TASLP.2021.3129331 10.1109/TASLP.2021.3129331 Chen J. X., Jiang D. M., Zhang Y. N. (2019). A hierarchical bidirectional gru model with attention for EEG-based emotion classification. IEEE Access 7, 118530–118540. 10.1109/ACCESS.2019.2936817 10.1109/ACCESS.2019.2936817 Cheng C., Yu Z., Zhang Y., Feng L. (2023). Hybrid network using dynamic graph convolution and temporal self-attention for EEG-based emotion recognition. IEEE Trans. Neural Netw. Learn. Syst. 10.1109/TNNLS.2023.3319315 10.1109/TNNLS.2023.3319315 37831554 Dar M. N., Akram M. U., Khawaja S. G., Pujari A. N. (2020). CNN and LSTM-based emotion charting using physiological signals. Sensors 20:4551. 10.3390/s20164551 10.3390/s20164551 PMC7472085 32823807 Duan R.-N., Zhu J.-Y., Lu B.-L. (2013). “Differential entropy feature for eeg-based emotion classification,” in International IEEE/EMBS Conference on Neural Engineering (San Diego, CA: IEEE; ), 81–84. Hu F., Qian M., He K., Zhang W.-A., Yang X. (2024a). A novel multi-feature fusion network with spatial partitioning strategy and cross-attention for armband-based gesture recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 32, 3878–3890. 10.1109/TNSRE.2024.3487216 10.1109/TNSRE.2024.3487216 39466868 Hu F., Zhang L., Yang X., Zhang W.-A. (2024b). EEG-based driver fatigue detection using spatio-temporal fusion network with brain region partitioning strategy. IEEE Trans. Intellig. Transp. Syst. 25, 9618–9630. 10.1109/TITS.2023.3348517 10.1109/TITS.2023.3348517 Huang X., Wang S.-J., Liu X., Zhao G., Feng X., Pietikäinen M. (2019). Discriminative spatiotemporal local binary pattern with revisited integral projection for spontaneous facial micro-expression recognition. IEEE Trans. Affect. Comp. 10, 32–47. 10.1109/TAFFC.2017.2713359 10.1109/TAFFC.2017.2713359 Huang Z., Ma Y., Su J., Shi H., Jia S., Yuan B., et al. . (2023). CDBA: a novel multi-branch feature fusion model for eeg-based emotion recognition. Front. Physiol. 14:1200656. 10.3389/fphys.2023.1200656 10.3389/fphys.2023.1200656 PMC10399240 37546532 Islam M., Nooruddin S., Karray F., Muhammad G. (2024). Enhanced multimodal emotion recognition in healthcare analytics: a deep learning based model-level fusion approach. Biomed. Signal Process. Control 94:106241. 10.1016/j.bspc.2024.106241 10.1016/j.bspc.2024.106241 Jenke R., Peer A., Buss M. (2014). Feature extraction and selection for emotion recognition from EEG. IEEE Trans. Affect. Comp. 5:2339834. 10.1109/TAFFC.2014.2339834 10.1109/TAFFC.2014.2339834 Li C., Tang T., Pan Y., Yang L., Zhang S., Chen Z., et al. . (2024). An efficient graph learning system for emotion recognition inspired by the cognitive prior graph of eeg brain network. IEEE Trans. Neural Netw. Learn. Syst. 10.1109/TNNLS.2024.3405663 10.1109/TNNLS.2024.3405663 38837920 Li J., Pan W., Huang H., Pan J., Wang F. (2023). Stgate: spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition. Front. Hum. Neurosci. 17:1169949. 10.3389/fnhum.2023.1169949 10.3389/fnhum.2023.1169949 PMC10133470 37125349 Li M., Qiu M., Kong W., Zhu L., Ding Y. (2023). Fusion graph representation of EEG for emotion recognition. Sensors 23:1404. 10.3390/s23031404 10.3390/s23031404 PMC9919892 36772444 Li W., Zhang Z., Song A. (2020). Physiological-signal-based emotion recognition: an odyssey from methodology to philosophy. Measurement 172:108747. 10.1016/j.measurement.2020.108747 10.1016/j.measurement.2020.108747 Meneses Alarcão S., Fonseca M. J. (2017). Emotions recognition using EEG signals: a survey. IEEE Trans. Affective Comp. 10, 374–393. 10.1109/TAFFC.2017.2714671 10.1109/TAFFC.2017.2714671 Ngai W., Xie H., Zou D., Chou K. (2021). Emotion recognition based on convolutional neural networks and heterogeneous bio-signal data sources. Inform. Fusion 77, 107–117. 10.1016/j.inffus.2021.07.007 10.1016/j.inffus.2021.07.007 Niu W., Ma C., Sun X., Li M., Gao Z. (2023). A brain network analysis-based double way deep neural network for emotion recognition. IEEE Trans. Neural Syst. Rehab. Eng. 31, 917–925. 10.1109/TNSRE.2023.3236434 10.1109/TNSRE.2023.3236434 37018673 Pu H., Chen Z., Liu J., Yang X., Ren C., Liu H., et al. . (2023). Research on decision-level fusion method based on structural causal model in system-level fault detection and diagnosis. Eng. Appl. Artif. Intell. 126:107095. 10.1016/j.engappai.2023.107095 10.1016/j.engappai.2023.107095 Rahman M., Anjum A., Milu M., Khanam F., Uddin M. S., Mollah M. N. (2021). Emotion recognition from EEG-based relative power spectral topography using convolutional neural network. Array 11:100072. 10.1016/j.array.2021.100072 10.1016/j.array.2021.100072 0 Song Y., Zheng Q., Liu B., Gao X. (2023). Eeg conformer: convolutional transformer for EEG decoding and visualization. IEEE Trans. Neural Syst. Rehab. Eng. 31, 710–719. 10.1109/TNSRE.2022.3230250 10.1109/TNSRE.2022.3230250 37015413 Tao W., Wang Z., Wong C. M., Jia Z., Li C., Chen X., et al. . (2024). ADFCNN: attention-based dual-scale fusion convolutional neural network for motor imagery brain-computer interface. IEEE Trans. Neural Syst. Rehab. Eng. 32, 154–165. 10.1109/TNSRE.2023.3342331 10.1109/TNSRE.2023.3342331 38090841 Veeranki Y. R., Diaz L. R. M., Swaminathan R., Posada-Quintero H. F. (2024a). Nonlinear signal processing methods for automatic emotion recognition using electrodermal activity. IEEE Sens. J. 24, 8079–8093. 10.1109/JSEN.2024.3354553 10.1109/JSEN.2024.3354553 Veeranki Y. R., Ganapathy N., Swaminathan R., Posada-Quintero H. (2024b). Comparison of electrodermal activity signal decomposition techniques for emotion recognition. IEEE Access 12, 19952–19966. 10.1109/ACCESS.2024.3361832 10.1109/ACCESS.2024.3361832 Wang H., Zhao X., Zhao Y. (2022). Investigation of the effect of increased dimension levels in speech emotion recognition. IEEE Access 10, 78123–78134. 10.1109/ACCESS.2022.3194039 10.1109/ACCESS.2022.3194039 0 Wang Z., Tong Y., Heng X. (2019). Phase-locking value based graph convolutional neural networks for emotion recognition. IEEE Access 7, 93711–93722. 10.1109/ACCESS.2019.2927768 10.1109/ACCESS.2019.2927768 0 Wei C., Chen L., Song Z., Lou X., Li D. (2020). Eeg-based emotion recognition using simple recurrent units network and ensemble learning. Biomed. Signal Process. Control 58:101756. 10.1016/j.bspc.2019.101756 10.1016/j.bspc.2019.101756 0 Wu Q., Dong C., Guo F., Wang L., Wu X., Wen C. (2024). Privacy-preserving federated learning for power transformer fault diagnosis with unbalanced data. IEEE Trans. Indust. Inform. 20, 5383–5394. 10.1109/TII.2023.3333914 10.1109/TII.2023.3333914 Xiao G., Shi M., Ye M., Xu B., Chen Z., Ren Q. (2022). 4D attention-based neural network for EEG emotion recognition. Cogn. Neurodyn. 16, 1–14. 10.1007/s11571-021-09751-5 10.1007/s11571-021-09751-5 PMC9279544 35847538 Yan C., Chang X., Li Z., Guan W., Ge Z., Zhu L., et al. . (2022). ZeroNAS: differentiable generative adversarial networks search for zero-shot learning. IEEE Trans. Pattern Analy. Mach. Intellig. 44, 9733–9740. 10.1109/TPAMI.2021.3127346 10.1109/TPAMI.2021.3127346 34762584 Zeng H., Wu Q., Jin Y., Zheng H., Li M., Zhao Y., et al. . (2022). Siam-GCAN: a siamese graph convolutional attention network for EEG emotion recognition. IEEE Trans. Instrum. Meas. 71, 1–9. 10.1109/TIM.2022.3216829 10.1109/TIM.2022.3216829 Zhang Y., Xie Y., Kang L., Li K., Luo Y., Zhang Q. (2024). Feature-level fusion recognition of space targets with composite micromotion. IEEE Trans. Aerosp. Electron. Syst. 60, 934–951. 10.1109/TAES.2023.3331339 10.1109/TAES.2023.3331339 Zheng W.-L., Liu W., Lu Y., Lu B.-L., Cichocki A. (2019). Emotionmeter: a multimodal framework for recognizing human emotions. IEEE Trans. Cybern. 49, 1110–1122. 10.1109/TCYB.2018.2797176 10.1109/TCYB.2018.2797176 29994384 Zheng W.-L., Lu B.-L. (2015). Investigating critical frequency bands and channels for eeg-based emotion recognition with deep neural networks. IEEE Trans. Auton. Ment. Dev. 7, 162–175. 10.1109/TAMD.2015.2431497 10.1109/TAMD.2015.2431497 Zong Y., Zuo Q., Ng M. K.-P., Lei B., Wang S. (2024). A new brain network construction paradigm for brain disorder via diffusion-based graph contrastive learning. IEEE Trans. Pattern Analy. Mach. Intellig. 46, 10389–10403. 10.1109/TPAMI.2024.3442811 10.1109/TPAMI.2024.3442811 39137077 Zuo Q., Chen L., Shen Y., Ng M. K.-P., Lei B., Wang S. (2024a). BDHT: generative AI enables causality analysis for mild cognitive impairment. IEEE Trans. Automat. Sci. Eng. 10.1109/TASE.2024.3425949 10.1109/TASE.2024.3425949 0 Zuo Q., Wu H., Chen C. L. P., Lei B., Wang S. (2024b). Prior-guided adversarial learning with hypergraph for predicting abnormal connections in Alzheimer's Disease. IEEE Trans. Cybernet. 54, 3652–3665. 10.1109/TCYB.2023.3344641 10.1109/TCYB.2023.3344641 38236677 Zuo Q., Zhong N., Pan Y., Wu H., Lei B., Wang S. (2023). Brain structure-function fusing representation learning using adversarial decomposed-VAE for analyzing MCI. IEEE Trans. Neural Syst. Rehab. Eng. 31, 4017–4028. 10.1109/TNSRE.2023.3323432 10.1109/TNSRE.2023.3323432 37815971 39715878 2024 12 23 2397-3374 2024 Dec 23 Nature human behaviour Nat Hum Behav Behaviour-based dependency networks between places shape urban economic resilience. 10.1038/s41562-024-02072-7 Disruptions, such as closures of businesses during pandemics, not only affect businesses and amenities directly but also influence how people move, spreading the impact to other businesses and increasing the overall economic shock. However, it is unclear how much businesses depend on each other during disruptions. Leveraging human mobility data and same-day visits in five US cities, we quantify dependencies between points of interest encompassing businesses, stores and amenities. We find that dependency networks computed from human mobility exhibit significantly higher rates of long-distance connections and biases towards specific pairs of point-of-interest categories. We show that using behaviour-based dependency relationships improves the predictability of business resilience during shocks by around 40% compared with distance-based models, and that neglecting behaviour-based dependencies can lead to underestimation of the spatial cascades of disruptions. Our findings underscore the importance of measuring complex relationships in patterns of human mobility to foster urban economic resilience to shocks. © 2024. The Author(s). Yabe Takahiro T 0000-0001-8967-1967 Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA. takahiroyabe@nyu.edu. Center for Urban Science and Progress (CUSP), Tandon School of Engineering, New York University, Brooklyn, NY, USA. takahiroyabe@nyu.edu. Department of Technology Management and Innovation, Tandon School of Engineering, New York University, Brooklyn, NY, USA. takahiroyabe@nyu.edu. García Bulle Bueno Bernardo B Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA. Frank Morgan R MR 0000-0001-9487-9359 Department of Informatics and Networked Systems, University of Pittsburgh, Pittsburgh, PA, USA. Digital Economy Lab, Institute for Human-Centered AI, Stanford University, Stanford, CA, USA. Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA. Pentland Alex A 0000-0002-8053-9983 Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA. Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA. Moro Esteban E 0000-0003-2894-1024 Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA. esteban.moroegido@gmail.com. Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA. esteban.moroegido@gmail.com. Network Science Institute, Department of Physics, Northeastern University, Boston, MA, USA. esteban.moroegido@gmail.com. eng 2425021 National Science Foundation (NSF) 2218748 National Science Foundation (NSF) 2420945 National Science Foundation (NSF) Journal Article 2024 12 23 England Nat Hum Behav 101697750 2397-3374 IM Competing interests: The authors declare no competing interests. 2023 11 29 2024 10 22 2024 12 24 0 25 2024 12 24 0 25 2024 12 23 23 25 aheadofprint 39715878 10.1038/s41562-024-02072-7 10.1038/s41562-024-02072-7 Balland, P.-A. et al. Complex economic activities concentrate in large cities. Nat. Hum. Behav. 4, 248–254 (2020). 10.1038/s41562-019-0803-3 31932688 Pentland, A. Social Physics: How Good Ideas Spread—The Lessons from a New Science (Penguin, 2014). Vespignani, A. Modelling dynamical processes in complex socio-technical systems. Nat. Phys. 8, 32–39 (2012). 10.1038/nphys2160 Moro, E. et al. Universal resilience patterns in labor markets. Nat. Commun. 12, 1972 (2021). 10.1038/s41467-021-22086-3 33785734 8009945 Inoue, H. & Todo, Y. Firm-level propagation of shocks through supply-chain networks. Nat. Sustain. 2, 841–847 (2019). 10.1038/s41893-019-0351-x Pichler, A. et al. Building an alliance to map global supply networks. Science 382, 270–272 (2023). 10.1126/science.adi7521 37856603 Yabe, T., Bueno, B. G. B., Dong, X., Pentland, A. & Moro, E. Behavioral changes during the COVID-19 pandemic decreased income diversity of urban encounters. Nat. Commun. 14, 2310 (2023). 10.1038/s41467-023-37913-y 37085499 10120472 Ouyang, M. & Duenas-Osorio, L. Time-dependent resilience assessment and improvement of urban infrastructure systems. Chaos J. Nonlinear Sci. 22, 033122 (2012). 10.1063/1.4737204 Elmqvist, T. et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2, 267–273 (2019). 10.1038/s41893-019-0250-1 Modica, M. & Reggiani, A. Spatial economic resilience: overview and perspectives. Network. Spat. Econ. 15, 211–233 (2015). 10.1007/s11067-014-9261-7 Hidalgo, C. A. Economic complexity theory and applications. Nat. Rev. Phys. 3, 92–113 (2021). 10.1038/s42254-020-00275-1 Rose, A. Defining and measuring economic resilience to disasters. Disaster Prev. Manage. Int. J. 13, 307–314 (2004). 10.1108/09653560410556528 Verschuur, J., Koks, E. & Hall, J. Ports’ criticality in international trade and global supply-chains. Nat. Commun. 13, 4351 (2022). 10.1038/s41467-022-32070-0 35896543 9327979 Klimek, P., Poledna, S. & Thurner, S. Quantifying economic resilience from input–output susceptibility to improve predictions of economic growth and recovery. Nat. Commun. 10, 1677 (2019). 10.1038/s41467-019-09357-w 30975987 6459978 Colon, C., Hallegatte, S. & Rozenberg, J. Criticality analysis of a country’s transport network via an agent-based supply chain model. Nat. Sustain. 4, 209–215 (2021). 10.1038/s41893-020-00649-4 Levermann, A. Climate economics: make supply chains climate-smart. Nature 506, 27–29 (2014). 10.1038/506027a 24499903 Barrero, J. M., Bloom, N., & Davis, S. J. Why Working From Home Will Stick No. w28731 https://www.nber.org/papers/w28731 (National Bureau of Economic Research, 2021). Lucchini, L. et al. Living in a pandemic: changes in mobility routines, social activity and adherence to COVID-19 protective measures. Sci. Rep. 11, 1–12 (2021). 10.1038/s41598-021-04139-1 I’ll be latte to the office. Bank of America Institute https://business.bofa.com/content/dam/flagship/bank-of-america-institute/economic-insights/i-will-be-latte-to-the-office-july-2022.pdf (2022). Salon, D. et al. The potential stickiness of pandemic-induced behavior changes in the united states. Proc. Natl Acad. Sci. USA 118, e2106499118 (2021). 10.1073/pnas.2106499118 34140349 8271792 Zhai, W. & Yue, H. Economic resilience during COVID-19: an insight from permanent business closures. Environ. Plan. A 54, 219–221 (2022). 10.1177/0308518X211055181 Becker, G. S. A theory of the allocation of time. Econ. J. 75, 493–517 (1965). 10.2307/2228949 Baltas, G., Argouslidis, P. C. & Skarmeas, D. The role of customer factors in multiple store patronage: a cost–benefit approach. J. Retail. 86, 37–50 (2010). 10.1016/j.jretai.2010.01.005 Maruyama, M. & Wu, L. Multiple store patronage: the effects of store characteristics. J. Retail. Consum. Serv. 21, 601–609 (2014). 10.1016/j.jretconser.2014.04.009 Seock, Y.-K. Influence of retail store environmental cues on consumer patronage behavior across different retail store formats: an empirical analysis of us hispanic consumers. J. Retail. Consum. Serv. 16, 329–339 (2009). 10.1016/j.jretconser.2009.03.001 Uncles, M. D. & Kwok, S. Generalizing patterns of store-type patronage: an analysis across major chinese cities. The Int. Rev. Retail Distrib. Consum. Res. 18, 473–493 (2008). Hidalgo, C. A., Castañer, E. & Sevtsuk, A. The amenity mix of urban neighborhoods. Habitat Int. 106, 102205 (2020). 10.1016/j.habitatint.2020.102205 Bahrami, M., Xu, Y., Tweed, M. & Bozkaya, B. et al. Using gravity model to make store closing decisions: a data driven approach. Expert Sys. Appl. 205, 117703 (2022). 10.1016/j.eswa.2022.117703 Sevtsuk, A. Street Commerce: Creating Vibrant Urban Sidewalks (Univ. Pennsylvania Press, 2020). Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A. -L. Understanding individual human mobility patterns. Nature 453, 779 (2008). 10.1038/nature06958 18528393 Blondel, V. D., Decuyper, A. & Krings, G. A survey of results on mobile phone datasets analysis. EPJ Data Sci. 4, 10 (2015). 10.1140/epjds/s13688-015-0046-0 Moro, E., Calacci, D., Dong, X. & Pentland, A. Mobility patterns are associated with experienced income segregation in large us cities. Nat. Commun. 12, 1–10 (2021). 10.1038/s41467-021-24899-8 Chang, S. et al. Mobility network models of COVID-19 explain inequities and inform reopening. Nature 589, 82–87 (2021). 10.1038/s41586-020-2923-3 33171481 Yabe, T., Rao, P. S. C., Ukkusuri, S. V. & Cutter, S. L. Toward data-driven, dynamical complex systems approaches to disaster resilience. Proc. Natl Acad. Sci. USA 119, e2111997119 (2022). 10.1073/pnas.2111997119 35135891 8872719 Yabe, T., Zhang, Y. & Ukkusuri, S. V. Quantifying the economic impact of disasters on businesses using human mobility data: a bayesian causal inference approach. EPJ Data Sci. 9, 36 (2020). 10.1140/epjds/s13688-020-00255-6 Podesta, C., Coleman, N., Esmalian, A., Yuan, F. & Mostafavi, A. Quantifying community resilience based on fluctuations in visits to points-of-interest derived from digital trace data. J. R. Soc. Interface 18, 20210158 (2021). 10.1098/rsif.2021.0158 33906388 8086905 Di Clemente, R. et al. Sequences of purchases in credit card data reveal lifestyles in urban populations. Nat. Commun. 9, 1–8 (2018). 10.1038/s41467-018-05690-8 Yang, Y., Pentland, A. & Moro, E. Identifying latent activity behaviors and lifestyles using mobility data to describe urban dynamics. EPJ Data Sci. 12, 15 (2023). 10.1140/epjds/s13688-023-00390-w 37220629 10193357 Tobler, W. R. A computer movie simulating urban growth in the detroit region. Econ. Geogr. 46, 234–240 (1970). 10.2307/143141 Leontief, W. Input–Output Economics (Oxford Univ. Press, 1986). Schwartz, H. L. et al. Remote Learning is Here to Stay. Results From the First American School District Panel Survey (RAND Corporation, 2020). Bonner, E. R. The economic impact of a university on its local community. J. Am. Inst. Planners 34, 339–343 (1968). 10.1080/01944366808977555 Hansen, S., Lambert, P. J., Bloom, N., Davis, S. J., Sadun, R., & Taska, B. Remote Work Across Jobs, Companies, and Space. No. w31007 https://www.nber.org/papers/w31007 (National Bureau of Economic Research, 2023). Schwartz, A. How the Red Cross used tweets to save lives during Hurricane Sandy. Fast Company https://www.fastcompany.com/3020923/how-the-red-cross-used-tweets-to-save-lives-during-hurricane-sandy (2013). Gauvin, L. et al. Gender gaps in urban mobility. Hum. Soc. Sci. Commun. 7, 1–13 (2020). Wang, Q., Phillips, N. E., Small, M. L. & Sampson, R. J. Urban mobility and neighborhood isolation in America’s 50 largest cities. Proc. Natl Acad. Sci. USA 115, 7735–7740 (2018). 10.1073/pnas.1802537115 29987019 6065036 Xue, J. et al. Quantifying the spatial homogeneity of urban road networks via graph neural networks. Nat. Mach. Intell. 4, 246–257 (2022). 10.1038/s42256-022-00462-y Tiger data products guide. United States Census Bureau https://www.census.gov/programs-surveys/geography/guidance/tiger-data-products-guide.html (2024). 39715271 2024 12 23 1935-2735 18 12 2024 Dec 23 PLoS neglected tropical diseases PLoS Negl Trop Dis African schistosomes in small mammal communities: Perspectives from a spatio-temporal survey in the vicinity of Lake Guiers, Senegal. e0012721 e0012721 10.1371/journal.pntd.0012721 Schistosomiasis is a neglected tropical disease of public health significance. In view of its elimination as a public health problem by 2030, adopting a One Health approach is necessary, considering its multidimensional nature. Animal reservoirs, in particular, pose a significant threat to schistosomiasis control in Africa and beyond. In this study, we conducted a spatio-temporal survey of Schistosoma infections in small mammal communities and intermediate snail hosts in the vicinity of Lake Guiers in northern Senegal. Sampling campaigns were undertaken four times between April 2021 and August 2022 around eight villages. A total of 534 small mammals of four species, primarily Hubert's multimammate mice Mastomys huberti, were captured. Out of 498 individuals examined, only 18 rodents (17 M. huberti and 1 Arvicanthis niloticus) were infected with schistosomes. The infection rates in M. huberti varied over time (prevalence range: 2.4% to 9.3%, intensity range: 4 to 132), and space (prevalence range: 3.1% to 40%, intensity range: 2 to 110) and were higher in adult hosts captured during or just after the rainy season, a time when older individuals dominate in rodent populations. Using a multi-locus molecular approach (cox1 and ITS) on Schistosoma larvae (cercariae and miracidia) and adult worms, we identified Schistosoma mansoni as the most widespread species. We also detected Schistosoma bovis and Schistosoma haematobium in M. huberti from one locality (Temeye). Although no Schistosoma hybrids were found, the discovery of a male S. mansoni and a female S. bovis pair raises concerns about potential hybridization patterns that could occur in rodents. Finally, three snail species were found infected (25 Biomphalaria pfeifferi, 3 Bulinus truncatus and 1 Bulinus senegalensis) including with S. mansoni, S. bovis, S. haematobium and S. haematobium x S. bovis hybrids. Our findings highlight the spatial-temporal variations of Schistosoma infections in rodents and emphasize the need for fine-scale monitoring over time and space for effective One Health measures and ensuring the sustainability of schistosomiasis control efforts. Copyright: © 2024 Kincaid-Smith et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Kincaid-Smith Julien J 0000-0002-7471-1724 CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France. Savassi Boris Sègnito A E BSAE Centre de Recherche pour la lutte contre les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d'Abomey-Calavi, Abomey-Calavi, Bénin. IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France. Senghor Bruno B VITROME, Campus International IRD-UCAD de Hann, Dakar, Sénégal. Diagne Christophe C CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France. Niang Youssoupha Y CBGP-BIOPASS 2, IRD, Campus IRD-ISRA de Bel-Air, Dakar, Sénégal. Kane Mamadou M CBGP-BIOPASS 2, IRD, Campus IRD-ISRA de Bel-Air, Dakar, Sénégal. Tatard Caroline C CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France. Brouat Carine C CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France. Granjon Laurent L CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France. eng Journal Article 2024 12 23 United States PLoS Negl Trop Dis 101291488 1935-2727 IM The authors have declared that no competing interests exist. 2024 5 31 2024 11 25 2024 12 23 22 59 2024 12 23 22 59 2024 12 23 14 4 aheadofprint 39715271 10.1371/journal.pntd.0012721 PNTD-D-24-00765 trying2...
Disentangling the neuroanatomical correlates of perseveration from unilateral spatial neglect. | LitMetric
Perseverative behavior, manifest as re-cancelling or re-visiting targets, is distinct from spatial neglect. Perseveration is thought to reflect frontal or parietal lobe dysfunction, but the neuroanatomical correlates remain poorly defined and the interplay between neglect and perseveration is incompletely understood. We enrolled 87 consecutive patients with diffusion-weighted, perfusion-weighted imaging, and spatial neglect testing within 24 hours of right hemisphere ischemic stroke. The degrees of spatial neglect and perseveration were analyzed. Perseveration was apparent in 46% (40/87) of the patients; 28% (24/87) showed perseveration only; 18% (16/87) showed both perseveration and neglect; and 3% (3/87) showed neglect only. Perseverative behaviors occur in an inverted "U" shape: little neglect was associated with few perseverations; moderate neglect with high perseverations; and in severe neglect targets may not enter consciousness and perseverative responses decrease. Brodmann areas of dysfunction, and the caudate and putament, were assessed and volumetrically measured. In this study, the caudate and putamen were not associated with perseveration. After controlling for neglect, and volume of dysfunctional tissue, only Brodmann area 46 was associated with perseveration. Our results further support the notion that perseveration and neglect are distinct entities; while they often co-occur, acute dorsolateral prefrontal cortex ischemia is associated with perseveration specifically.
Publication Analysis
Top Keywords
associated perseveration
12
neuroanatomical correlates
8
disentangling neuroanatomical
4
correlates perseveration
4
Similar Publications
Small
December 2024
Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, Shaanxi, 710049, China.
The heterogeneity of extracellular vesicles (EVs) surface information represents different functions, which is neglected in previous studies. In this study, a label-free SERS analysis approach is demonstrated to study fundamental EV biological and physical information heterogeneity by matching specific sizes of nano-enhanced particles. This strategy reveals informative, comprehensive, and high-quality SERS spectra of the overall exosome surface, and effectively circumvents the key information loss caused by the spatial resistance of NPs binding to the 293 exosomes' concave structure.
View Article and Find Full Text PDF
PLoS Negl Trop Dis
December 2024
Universidade Vale do Rio Doce, Governador Valadares, Minas Gerais, Brazil.
Background : Brazil has the second highest case count of Hansen's disease (leprosy, HD), but factors contributing to transmission in highly endemic areas of the country remain unclear. Recent studies have shown associations of helminth infection and leprosy, supporting a biological plausibility for increased leprosy transmission in areas with helminths. However, spatial analyses of the overlap of these infections are limited.
View Article and Find Full Text PDF
Introduction : Emotion recognition using electroencephalography (EEG) is a key aspect of brain-computer interface research. Achieving precision requires effectively extracting and integrating both spatial and temporal features. However, many studies focus on a single dimension, neglecting the interplay and complementarity of multi-feature information, and the importance of fully integrating spatial and temporal dynamics to enhance performance.
View Article and Find Full Text PDF
Disruptions, such as closures of businesses during pandemics, not only affect businesses and amenities directly but also influence how people move, spreading the impact to other businesses and increasing the overall economic shock. However, it is unclear how much businesses depend on each other during disruptions. Leveraging human mobility data and same-day visits in five US cities, we quantify dependencies between points of interest encompassing businesses, stores and amenities.
View Article and Find Full Text PDF
Schistosomiasis is a neglected tropical disease of public health significance. In view of its elimination as a public health problem by 2030, adopting a One Health approach is necessary, considering its multidimensional nature. Animal reservoirs, in particular, pose a significant threat to schistosomiasis control in Africa and beyond.
View Article and Find Full Text PDF
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!