[Brain neuroimaging with susceptibility weighted imaging].

Acta Med Port

Sector de Neurorradiologia, Clínica Universitária de Imagiologia, Faculdade de Medicina, Universidade de Coimbra/Hospitais da Universidade de Coimbra, Coimbra, Portugal.

Published: November 2012

The Susceptibility-weighted (SWI) imaging is a recent MRI sequence that shows the magnetic susceptibility differences of various tissues. A large number of neurological / neurosurgical diseases can benefit with this MRI sequence. The basic physics principles are reviewed and also its clinical application in several brain pathologies in adults and in paediatrics, mainly vascular, tumors and neurodegenerative/genetic disorders. Some clinical cases show the utility of SWI. The anatomic detail of some brain structures, the deep venous system and mesencephalic structures is shown.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mri sequence
8
[brain neuroimaging
4
neuroimaging susceptibility
4
susceptibility weighted
4
weighted imaging]
4
imaging] susceptibility-weighted
4
susceptibility-weighted swi
4
swi imaging
4
imaging mri
4
sequence magnetic
4

Similar Publications

Background: Computed tomography (CT) is the gold standard imaging modality for the assessment of 3D bony morphology but incurs the cost of ionizing radiation exposure. High-resolution 3D magnetic resonance imaging (MRI) with CT-like bone contrast (CLBC) may provide an alternative to CT in allowing complete evaluation of both bony and soft tissue structures with a single MRI examination.

Purpose: To review the technical aspects of an optimized stack-of-stars 3D gradient recalled echo pulse sequence method (3D-Bone) in generating 3D MR images with CLBC, and to present a pictorial review of the utility of 3D-Bone in the clinical assessment of common musculoskeletal conditions.

View Article and Find Full Text PDF

Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined.

View Article and Find Full Text PDF

Rat models of postintracerebral hemorrhage pneumonia induced by nasal inoculation with or intratracheal inoculation with LPS.

Front Immunol

January 2025

State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Neurology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.

Background: A stable and reproducible experimental bacterial pneumonia model postintracerebral hemorrhage (ICH) is necessary to help investigating the pathogenesis and novel treatments of Stroke-associated pneumonia (SAP).

Aim: To establish a Gram-negative bacterial pneumonia-complicating ICH rat model and an acute lung injury (ALI)-complicating ICH rat model.

Methods: We established two standardized models of post-ICH pneumonia by nasal inoculation with () or intratracheal inoculation with lipopolysaccharide (LPS).

View Article and Find Full Text PDF

White matter hyperintensities (WMHs) are commonly detected on T2-weighted magnetic resonance imaging (MRI) scans, occurring in both typical aging and Alzheimer's disease (AD). Despite their frequent appearance and their association with cognitive decline in AD, the molecular factors contributing to WMHs remain unclear. In this study, we investigated the transcriptomic profiles of two commonly affected brain regions with coincident AD pathology-frontal subcortical white matter (frontal-WM) and occipital subcortical white matter (occipital-WM)-and compared with age-matched cognitively intact controls.

View Article and Find Full Text PDF

Background: Tropical Candida spondylitis is an uncommon cause of lower back pain in patients, especially in non-tropical areas or in patients not at risk of immunocompromise.

Case Presentation: A 65-year-old woman presented with a six-month history of poorly managed low back pain, now accompanied by numbness and pain in both lower extremities. Her medical history was significant for tertiary hypertension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!