Bacterial canker caused by Clavibacter michiganensis subsp. michiganensis is known to cause significant economic losses to tomato production worldwide. Biological control has been proposed as an alternative to current chemical containment methods, which are often inefficient and may leave adverse effects on the environment. However, only little headway has so far been made in developing biocontrol strategies against C. michiganensis subsp. michiganensis. To address this knowledge gap, we investigated the antagonistic capacity of PCA, produced by Pseudomonas sp. LBUM223, and DAPG and HCN, both produced by Pseudomonas sp. LBUM300, on C. michiganensis subsp. michiganensis under in vitro and in planta conditions. Nonsynthesizing isogenic mutants of the producer strains were also developed to further dissect the role of each individual metabolite on C. michiganensis subsp. michiganensis biological control. Novel specific quantitative polymerase chain reaction TaqMan assays allowed quantification of C. michiganensis subsp. michiganensis in tomato plants and rhizospheric soil. Pseudomonas spp. LBUM223 and LBUM300 significantly repressed C. michiganensis subsp. michiganensis growth in vitro, while their respective nonproducing mutants showed less or no significant antagonistic activity. In planta, only Pseudomonas sp. LBUM300 was capable of significantly reducing disease development and C. michiganensis subsp. michiganensis rhizospheric population, suggesting that the production of both DAPG and HCN was involved. In summary, simultaneous DAPG/HCN production by Pseudomonas sp. LBUM300 shows great potential for controlling bacterial canker of tomato.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-11-11-0312DOI Listing

Publication Analysis

Top Keywords

michiganensis subsp
28
subsp michiganensis
28
pseudomonas lbum300
16
michiganensis
14
dapg hcn
12
biological control
12
bacterial canker
12
production dapg
8
canker tomato
8
produced pseudomonas
8

Similar Publications

Amphibian skin is a valuable source of host defense peptides (HDPs). This study aimed to identify HDPs with novel amino acid sequences from the skin of and analyze their functions. cDNAs encoding HDP precursors were cloned and sequenced using RT-PCR and 3'-RACE.

View Article and Find Full Text PDF

Synthetic peptides bioactive against phytopathogens have lower impact on some beneficial bacteria: An assessment of peptides biosafety in agriculture.

J Environ Manage

January 2025

iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Portugal; Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Spain; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Portugal. Electronic address:

The emergence of bacterial resistance and the increasing restrictions on the use of agrochemicals are boosting the search for novel, sustainable antibiotics. Antimicrobial peptides (AMPs) arise as a new generation of antibiotics due to their effectiveness at low doses and biocompatibility. We compared the antimicrobial activity of four promising AMPs (CA-M, BP100, RW-BP100, and 3.

View Article and Find Full Text PDF

subsp. () is an important plant-pathogenic bacterium that causes canker and wilt diseases. Biological control of the disease with bacteriophages is an alternative to conventional methods.

View Article and Find Full Text PDF

Clavibacter michiganensis subsp. michiganensis (Cmm) and C. michiganensis subsp.

View Article and Find Full Text PDF

Combat phytopathogenic bacteria employing Argirium-SUNCs: limits and perspectives.

Appl Microbiol Biotechnol

June 2024

Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.

Bacterial plant diseases are difficult to control as the durability of deployed control measures is thwarted by continuous and rapid changing of bacterial populations. Although application of copper compounds to plants is the most widespread and inexpensive control measure, it is often partially efficacious for the frequent appearance of copper-resistant bacterial strains and it is raising concerns for the harmful effects of copper on environment and human health. Consequently, European Community included copper compounds in the list of substances candidates for substitution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!