Interfacial friction between semiflexible polymers and crystalline surfaces.

J Chem Phys

Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48824, USA.

Published: June 2012

The results obtained from molecular dynamics simulations of the friction at an interface between polymer melts and weakly attractive crystalline surfaces are reported. We consider a coarse-grained bead-spring model of linear chains with adjustable intrinsic stiffness. The structure and relaxation dynamics of polymer chains near interfaces are quantified by the radius of gyration and decay of the time autocorrelation function of the first normal mode. We found that the friction coefficient at small slip velocities exhibits a distinct maximum which appears due to shear-induced alignment of semiflexible chain segments in contact with solid walls. At large slip velocities, the friction coefficient is independent of the chain stiffness. The data for the friction coefficient and shear viscosity are used to elucidate main trends in the nonlinear shear rate dependence of the slip length. The influence of chain stiffness on the relationship between the friction coefficient and the structure factor in the first fluid layer is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4728106DOI Listing

Publication Analysis

Top Keywords

friction coefficient
16
crystalline surfaces
8
slip velocities
8
chain stiffness
8
friction
5
interfacial friction
4
friction semiflexible
4
semiflexible polymers
4
polymers crystalline
4
surfaces molecular
4

Similar Publications

Nanometer-thick ultrathin coatings with superior mechanical strength and desirable lubricating and antifouling performance are critical for the miniaturization of implantable medical devices. However, integrating these properties at the nanoscale remains challenging due to the inherent trade-off between mechanical strength and hydration as well as limitations in coating thickness. In this work, we address these challenges by employing dual-function metal coordination to construct a ∼25 nm thick bilayer structure.

View Article and Find Full Text PDF

The adhesion of marine organisms to marine facilities negatively impacts human productivity. This phenomenon, known as marine fouling, constitutes a serious issue in the marine equipment industry. It increases resistance for ships and their structures, which, in turn, raises fuel consumption and reduces ship speed.

View Article and Find Full Text PDF

Background: Fractional flow reserve (FFR) can be estimated by analysis of intravascular imaging in a coronary artery; however, there are no data for estimated FFR in an extremity artery. The aim of this concept-generating study was to determine whether it is possible to estimate the value of peripheral FFR (PFFR) by intravascular ultrasound (IVUS) analysis also in femoropopliteal artery lesions.

Methods: Between April 2022 and February 2023, PFFR was measured before endovascular therapy in 31 stenotic femoropopliteal artery lesions.

View Article and Find Full Text PDF

The impact of coarse aggregate mineral compositions on skid resistance performance of asphalt pavement: A comprehensive study.

PLoS One

December 2024

Key Laboratory of Intelligent Construction and Maintenance of CAAC, Xi'an, Shaanxi, China.

This study aimed to investigate the influence of different coarse aggregate mineral compositions on the skid resistance performance of asphalt pavement. The imprint method was utilized to assess the contact probability between various graded asphalt surface aggregates and tires. Additionally, macroscopic adhesive friction coefficients between polished surfaces of three types of rock slabs (basalt, limestone, granite) and rubber were determined using a pendulum friction tester.

View Article and Find Full Text PDF

Highly Compressible Micro/Nanofibrous Sponges with Thin-Walled Cavity Structures Enable Low-Frequency Noise Reduction.

Nano Lett

December 2024

Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China.

Increasing noise pollution has generated a tremendous threat to human health and incurred great economic losses. However, most existing noise-absorbing materials present a significant challenge in achieving lightweight, robust mechanical stability, and efficient low-frequency (<1000 Hz) noise reduction. Herein, we create highly compressible micro/nanofibrous sponges with thin-walled cavity structures for efficient noise reduction through electrospinning and dispersion casting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!