Nonspecific binding or sequestration results in differences between free and total drug concentrations, both in vitro and in vivo. Membrane partitioning and not protein binding is the primary mechanism of drug sequestration. Therefore, physicochemical properties, e.g., LogP can be used to predict drug sequestration in membrane and cell-based assays. The concentration of drug in a membrane is determined by the both the rate in and out of the membrane. In contrast, membrane permeability is a function of the rate in only. This commentary discusses the origins of membrane partitioning and permeability and their impact on cellular disposition.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.112.046599DOI Listing

Publication Analysis

Top Keywords

membrane partitioning
12
protein binding
8
drug sequestration
8
membrane
7
commentary nonspecific
4
nonspecific protein
4
binding versus
4
versus membrane
4
partitioning semantics
4
semantics nonspecific
4

Similar Publications

Predictive Potential of ECMO Blood Flow for Hemolysis and Outcome of Patients with Severe ARDS.

J Clin Med

December 2024

Department of Anesthesiology and Intensive Care Medicine CCM/CVK Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany.

Treatment with veno-venous extracorporeal membrane oxygenation (VV ECMO) has become a frequently considered rescue therapy in patients with severe acute respiratory distress syndrome (ARDS). Hemolysis is a common complication in patients treated with ECMO. Currently, it is unclear whether increased ECMO blood flow (Q̇) contributes to mortality and might be associated with increased hemolysis.

View Article and Find Full Text PDF

Despite the significant benefits of aquatic passive sampling (low detection limits and time-weighted average concentrations), the use of passive samplers is impeded by uncertainties, particularly concerning the accuracy of sampling rates. This study employed a systematic evaluation approach based on the combination of meta-analysis and quantitative structure-property relationships (QSPR) models to address these issues. A comprehensive meta-analysis based on extensive data from 298 studies on the Polar Organic Chemical Integrative Sampler (POCIS) identified essential configuration parameters, including the receiving phase (type, mass) and the diffusion-limiting membrane (type, thickness, pore size), as key factors influencing uptake kinetic parameters.

View Article and Find Full Text PDF

Budding yeast cells multiply by asymmetric cell division. During this process, the cell organelles are transported by myosin motors along the actin cytoskeleton into the growing bud, while at the same time some organelles must be retained in the mother cell. The ordered partitioning of organelles depends on highly regulated binding of motor proteins to cargo membranes.

View Article and Find Full Text PDF

Toxic Effects of Butanol in the Plane of the Cell Membrane.

Langmuir

January 2025

Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45220, United States.

Solvent toxicity limits -butanol fermentation titer, increasing the cost and energy consumption for subsequent separation processes and making biobased production more expensive and energy-intensive than petrochemical approaches. Amphiphilic solvents such as -butanol partition into the cell membrane of fermenting microorganisms, thinning the transverse structure, and eventually causing a loss of membrane potential and cell death. In this work, we demonstrate the deleterious effects of -butanol partitioning upon the lateral dimension of the membrane structure, called membrane domains or lipid rafts.

View Article and Find Full Text PDF

Small regulatory RNAs (sRNA) have been shown to play a large role in the management of stress responses in and other bacteria. Upon fluctuations in nutrient availability and exposure to antimicrobials and superoxide-generating agents, the MicF sRNA in has been shown to regulate a small set of genes involved in the management of membrane permeability. Currently, it is unknown whether MicF acts on other processes to mediate the response to these agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!