One of the major constraints facing the large-scale production of cassava (Manihot esculenta) roots is the rapid postharvest physiological deterioration (PPD) that occurs within 72 h following harvest. One of the earliest recognized biochemical events during the initiation of PPD is a rapid burst of reactive oxygen species (ROS) accumulation. We have investigated the source of this oxidative burst to identify possible strategies to limit its extent and to extend cassava root shelf life. We provide evidence for a causal link between cyanogenesis and the onset of the oxidative burst that triggers PPD. By measuring ROS accumulation in transgenic low-cyanogen plants with and without cyanide complementation, we show that PPD is cyanide dependent, presumably resulting from a cyanide-dependent inhibition of respiration. To reduce cyanide-dependent ROS production in cassava root mitochondria, we generated transgenic plants expressing a codon-optimized Arabidopsis (Arabidopsis thaliana) mitochondrial alternative oxidase gene (AOX1A). Unlike cytochrome c oxidase, AOX is cyanide insensitive. Transgenic plants overexpressing AOX exhibited over a 10-fold reduction in ROS accumulation compared with wild-type plants. The reduction in ROS accumulation was associated with a delayed onset of PPD by 14 to 21 d after harvest of greenhouse-grown plants. The delay in PPD in transgenic plants was also observed under field conditions, but with a root biomass yield loss in the highest AOX-expressing lines. These data reveal a mechanism for PPD in cassava based on cyanide-induced oxidative stress as well as PPD control strategies involving inhibition of ROS production or its sequestration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425186 | PMC |
http://dx.doi.org/10.1104/pp.112.200345 | DOI Listing |
Commun Biol
January 2025
Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.
In vertebrates and plants, dsRNA plays crucial roles as PAMP and as a mediator of RNAi. How higher fungi respond to dsRNA is not known. We demonstrate that Magnaporthe oryzae (Mo), a globally significant crop pathogen, internalizes dsRNA across a broad size range of 21 to about 3000 bp.
View Article and Find Full Text PDFNat Commun
January 2025
Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:
Synergistic therapy combining photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be a highly effective strategy for cancer treatment. However, PTT heavily relies on the accumulation of therapeutic agents at the tumor site. The peroxidase (POD) activity of common catalysts can be rapidly exhausted during the accumulation process, prior to laser intervention, thereby diminishing the synergistic enhancement effect of the combined therapy.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China. Electronic address:
As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032,P. R. China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China. Electronic address:
Oxidative stress induced by excess ethanol is an important factor in the progression of alcoholic liver disease (ALD). In recent years, inhibiting Kelch-like ECH-associated protein 1 (KEAP1) to activate the antioxidant regulator Nuclear factor erythroid 2-related factor 2 (NRF2) has been considered an effective strategy for treating oxidative stress-related diseases, but its application in ALD remains insufficiently explored. This study aims to discover high-affinity inhibitors targeting the KEAP1 receptor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!