A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Feasibility of evaluating the CHIPRA care quality measures in electronic health record data. | LitMetric

The Children's Health Insurance Program Reauthorization Act of 2009 (CHIPRA) includes provisions for identifying standardized pediatric care quality measures. These 24 "CHIPRA measures" were designed to be evaluated by using claims data from health insurance plan populations. Such data have limited ability to evaluate population health, especially among uninsured people. The rapid expansion of data from electronic health records (EHRs) may help address this limitation by augmenting claims data in care quality assessments. We outline how to operationalize many of the CHIPRA measures for application in EHR data through a case study of a network of >40 outpatient community health centers in 2009-2010 with a single EHR. We assess the differences seen when applying the original claims-based versus adapted EHR-based specifications, using 2 CHIPRA measures (Chlamydia screening among sexually active female patients; BMI percentile documentation) as examples. Sixteen of the original CHIPRA measures could feasibly be evaluated in this dataset. Three main adaptations were necessary (specifying a visit-based population denominator, calculating some pregnancy-related factors by using EHR data, substituting for medication dispense data). Although it is feasible to adapt many of the CHIPRA measures for use in outpatient EHR data, information is gained and lost depending on how numerators and denominators are specified. We suggest first steps toward application of the CHIPRA measures in uninsured populations, and in EHR data. The results highlight the importance of considering the limitations of the original CHIPRA measures in care quality evaluations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382922PMC
http://dx.doi.org/10.1542/peds.2011-3705DOI Listing

Publication Analysis

Top Keywords

chipra measures
24
care quality
16
ehr data
16
data
10
chipra
8
measures
8
quality measures
8
electronic health
8
health insurance
8
claims data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!